Nicht aus der Schweiz? Besuchen Sie lehmanns.de

From Unimodal to Multimodal Machine Learning (eBook)

An Overview

(Autor)

eBook Download: PDF
2024
XIII, 70 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-57016-2 (ISBN)

Lese- und Medienproben

From Unimodal to Multimodal Machine Learning - Blaž Škrlj
Systemvoraussetzungen
42,79 inkl. MwSt
(CHF 41,80)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

With the increasing amount of various data types, machine learning methods capable of leveraging diverse sources of information have become highly relevant. Deep learning-based approaches have made significant progress in learning from texts and images in recent years. These methods enable simultaneous learning from different types of representations (embeddings). Substantial advancements have also been made in joint learning from different types of spaces. Additionally, other modalities such as sound, physical signals from the environment, and time series-based data have been recently explored. Multimodal machine learning, which involves processing and learning from data across multiple modalities, has opened up new possibilities in a wide range of applications, including speech recognition, natural language processing, and image recognition.

From Unimodal to Multimodal Machine Learning: An Overview gradually introduces the concept of multimodal machine learning, providing readers with the necessary background to understand this type of learning and its implications. Key methods representative of different modalities are described in more detail, aiming to offer an understanding of the peculiarities of various types of data and how multimodal approaches tend to address them (although not yet in some cases). The book examines the implications of multimodal learning in other domains and presents alternative approaches that offer computationally simpler yet still applicable solutions. The final part of the book focuses on intriguing open research problems, making it useful for practitioners who wish to better understand the limitations of existing methods and explore potential research avenues to overcome them




Blaž Škrlj is a postdoctoral researcher and a research assistant at Jožef Stefan Institute, where he investigates the domain of efficient multimodal machine learning and low-resource machine learning. Blaž completed his PhD in Information and Communication Technologies at the Jožef Stean International Postgraduate School. His work focused on neuro-symbolic machine learning, automated machine learning (AutoML) and representation learning. He authored and co-authored more than fifty research publications, mainly on machine learning and its applications in biomedicine and bioinformatics. 

Erscheint lt. Verlag 21.5.2024
Reihe/Serie SpringerBriefs in Computer Science
Zusatzinfo XIII, 70 p. 15 illus., 14 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte algorithms • Data Mining • Early Fusion • Embeddings • Language models • Late Fusion • machine learning • multimodal machine learning • representation learning • scalable machine learning • unimodal machine learning
ISBN-10 3-031-57016-2 / 3031570162
ISBN-13 978-3-031-57016-2 / 9783031570162
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95