The Siegel Modular Variety of Degree Two and Level Four/Cohomology of the Siegel Modular Group of Degree Two and Level Four
Seiten
1998
American Mathematical Society (Verlag)
978-0-8218-0620-3 (ISBN)
American Mathematical Society (Verlag)
978-0-8218-0620-3 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
Computes the cohomology of the principal congruence subgroup $/Gamma_2(4) /subset S{_p4} (/mathbb Z)$ consisting of matrices $/gamma /equiv /mathbf 1$ mod 4.
The Siegel Modular Variety of Degree Two and Level Four is by Ronnie Lee and Steven H. Weintraub: Let $/mathbf M_n$ denote the quotient of the degree two Siegel space by the principal congruence subgroup of level $n$ of $Sp_4(/mathbb Z)$. $/mathbfM_n$ is the moduli space of principally polarized abelian surfaces with a level $n$ structure and has a compactification $/mathbfM^*_n$ first constructed by Igusa. $/mathbfM^*_n$ is an almost non-singular (non-singular for $n> 1$) complex three-dimensional projective variety (of general type, for $n> 3$). The authors analyze the Hodge structure of $/mathbfM^*_4$, completely determining the Hodge numbers $h^{p,q} = /dim H^{p,q}(/mathbfM^*_4)$. Doing so relies on the understanding of $/mathbfM^*_2$ and exploitation of the regular branched covering $/mathbfM^*_4 /rightarrow /mathbfM^*_2$.""Cohomology of the Siegel Modular Group of Degree Two and Level Four"" is by J. William Hoffman and Steven H. Weintraub. The authors compute the cohomology of the principal congruence subgroup $/Gamma_2(4) /subset S{_p4} (/mathbb Z)$ consisting of matrices $/gamma /equiv /mathbf 1$ mod 4. This is done by computing the cohomology of the moduli space $/mathbfM_4$. The mixed Hodge structure on this cohomology is determined, as well as the intersection cohomology of the Satake compactification of $/mathbfM_4$.
The Siegel Modular Variety of Degree Two and Level Four is by Ronnie Lee and Steven H. Weintraub: Let $/mathbf M_n$ denote the quotient of the degree two Siegel space by the principal congruence subgroup of level $n$ of $Sp_4(/mathbb Z)$. $/mathbfM_n$ is the moduli space of principally polarized abelian surfaces with a level $n$ structure and has a compactification $/mathbfM^*_n$ first constructed by Igusa. $/mathbfM^*_n$ is an almost non-singular (non-singular for $n> 1$) complex three-dimensional projective variety (of general type, for $n> 3$). The authors analyze the Hodge structure of $/mathbfM^*_4$, completely determining the Hodge numbers $h^{p,q} = /dim H^{p,q}(/mathbfM^*_4)$. Doing so relies on the understanding of $/mathbfM^*_2$ and exploitation of the regular branched covering $/mathbfM^*_4 /rightarrow /mathbfM^*_2$.""Cohomology of the Siegel Modular Group of Degree Two and Level Four"" is by J. William Hoffman and Steven H. Weintraub. The authors compute the cohomology of the principal congruence subgroup $/Gamma_2(4) /subset S{_p4} (/mathbb Z)$ consisting of matrices $/gamma /equiv /mathbf 1$ mod 4. This is done by computing the cohomology of the moduli space $/mathbfM_4$. The mixed Hodge structure on this cohomology is determined, as well as the intersection cohomology of the Satake compactification of $/mathbfM_4$.
The Siegel Modular Variety of Degree Two and Level Four: Introduction Algebraic background Geometric background Taking stock Type III A Type II A Type II B Type IV C Summing up Appendix. An exact sequence in homology References Cohomology of the Siegel Modular Group of Degree Two and Level Four: Introduction The building Cycles The main theorems References.
Erscheint lt. Verlag | 30.4.1998 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 0-8218-0620-3 / 0821806203 |
ISBN-13 | 978-0-8218-0620-3 / 9780821806203 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90