Nicht aus der Schweiz? Besuchen Sie lehmanns.de

The Mathematics of Machine Learning (eBook)

Lectures on Supervised Methods and Beyond
eBook Download: EPUB
2024
210 Seiten
De Gruyter (Verlag)
978-3-11-128981-6 (ISBN)

Lese- und Medienproben

The Mathematics of Machine Learning - Maria Han Veiga, François Gaston Ged
Systemvoraussetzungen
64,95 inkl. MwSt
(CHF 63,45)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics.

There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction.

This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field.



Dr. Maria Han Veiga,
Assistant professor of mathematics, Ohio State University, Ohio, USA
Prior to joining Ohio State, she was a postdoctoral fellow at the University of Michigan in Mathematics and Data Science (MIDAS). She obtained her PhD at the University of Zurich. Her research focuses on numerical analysis for hyperbolic partial differential equations and scientific machine learning.

Dr. François Ged
Postdoctoral fellow, University of Vienna, Austria
He obtained his PhD in Mathematics at the University of Zurich, Switzerland, after which he was a postdoc fellow at the École Polytechnique Fédérale de Lausanne. His research interests gravitate around the theory of deep learning and reinforcement learning, as well as mathematical population genetics and growth-fragmentation processes.

Erscheint lt. Verlag 20.5.2024
Reihe/Serie De Gruyter Textbook
Zusatzinfo 13 b/w and 26 col. ill.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik
Schlagworte Analytic Functions • Complex Analysis • Complex Integration • Complex variables • Kernel-Methoden • Neuronale Netze • Statistisches Lernen • überwachtes Lernen
ISBN-10 3-11-128981-8 / 3111289818
ISBN-13 978-3-11-128981-6 / 9783111289816
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 20,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 18,25