Probability Theory, An Analytic View
Seiten
2024
|
3rd Revised edition
Cambridge University Press (Verlag)
978-1-009-54900-4 (ISBN)
Cambridge University Press (Verlag)
978-1-009-54900-4 (ISBN)
This text provides a rigorous, yet entertaining, introduction to modern probability theory and the analytic ideas and tools on which it relies. The third edition includes a new treatment of the Gaussian isoperimetric inequality and numerous improvements and clarifications. With more than 750 exercises, it is ideal for first-year graduate students.
The third edition of this highly regarded text provides a rigorous, yet entertaining, introduction to probability theory and the analytic ideas and tools on which the modern theory relies. The main changes are the inclusion of the Gaussian isoperimetric inequality plus many improvements and clarifications throughout the text. With more than 750 exercises, it is ideal for first-year graduate students with a good grasp of undergraduate probability theory and analysis. Starting with results about independent random variables, the author introduces weak convergence of measures and its application to the central limit theorem, and infinitely divisible laws and their associated stochastic processes. Conditional expectation and martingales follow before the context shifts to infinite dimensions, where Gaussian measures and weak convergence of measures are studied. The remainder is devoted to the mutually beneficial connection between probability theory and partial differential equations, culminating in an explanation of the relationship of Brownian motion to classical potential theory.
The third edition of this highly regarded text provides a rigorous, yet entertaining, introduction to probability theory and the analytic ideas and tools on which the modern theory relies. The main changes are the inclusion of the Gaussian isoperimetric inequality plus many improvements and clarifications throughout the text. With more than 750 exercises, it is ideal for first-year graduate students with a good grasp of undergraduate probability theory and analysis. Starting with results about independent random variables, the author introduces weak convergence of measures and its application to the central limit theorem, and infinitely divisible laws and their associated stochastic processes. Conditional expectation and martingales follow before the context shifts to infinite dimensions, where Gaussian measures and weak convergence of measures are studied. The remainder is devoted to the mutually beneficial connection between probability theory and partial differential equations, culminating in an explanation of the relationship of Brownian motion to classical potential theory.
Daniel W. Stroock is Simons Professor Emeritus of Mathematics at the Massachusetts Institute of Technology. He has published numerous articles and books, most recently 'Elements of Stochastic Calculus and Analysis' (2018) and 'Gaussian Measures in Finite and Infinite Dimensions' (2023).
Notation; 1. Sums of independent random variables; 2. The central limit theorem; 3. Infinitely divisible laws; 4. Lévy processes; 5. Conditioning and martingales; 6. Some extensions and applications of martingale theory; 7. Continuous parameter martingales; 8. Gaussian measures on a Banach space; 9. Convergence of measures on a Polish space; 10. Wiener measure and partial differential equations; 11. Some classical potential theory; References; Index.
Erscheinungsdatum | 05.11.2024 |
---|---|
Zusatzinfo | Worked examples or Exercises |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 867 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 1-009-54900-6 / 1009549006 |
ISBN-13 | 978-1-009-54900-4 / 9781009549004 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90