Curvature Blow-up in Doubly-warped Product Metrics Evolving by Ricci Flow
Seiten
2024
American Mathematical Society (Verlag)
978-1-4704-6876-7 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-6876-7 (ISBN)
For any manifold Np admitting an Einstein metric with positive Einstein constant, we study the behavior of the Ricci flow on high-dimensional products M = Np × Sq+1 with doubly warped product metrics. In particular, we provide a rigorous construction of local, type II, conical singularity formation on such spaces. It is shown that for any k > 1 there exists a solution with curvature blow-up rateRm ∞ (t) (T ? t)?k with singularity modeled on a Ricci-flat cone at parabolic scales.
Maxwell Stolarski, Arizona State University, Tempe, AZ.
Chapters
1. Introduction
2. Setup and preliminaries
3. The initial data and the topological argument
4. Pointwise estimates
5. No inner region blow-up
6. Coefficient estimate
7. Short-time estimates
8. Long-time estimates
9. Scalar curvature behavior
A. Analytic facts
B. Constants
Erscheinungsdatum | 02.05.2024 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society ; Volume: 295 Number: 1470 |
Verlagsort | Providence |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 272 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
ISBN-10 | 1-4704-6876-X / 147046876X |
ISBN-13 | 978-1-4704-6876-7 / 9781470468767 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Band 5: Hydraulik, Stromfadentheorie, Wellentheorie, Gasdynamik
Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 83,90