Selection Tests in Number Theory for Mathematical Olympiads
Springer International Publishing (Verlag)
978-3-031-59741-1 (ISBN)
This book gathers carefully chosen selection tests proposed to IMO (International Mathematical Olympiad) teams across many countries. Offering a blend of original solutions and adaptations by the author, this work is chronologically organized and provides a unique insight into the evolution of this mathematical contest. The proposed problems touch on topics such as the Chinese remainder theorem, Diophantine equations, Fermat's theorem, Euler's theorem, perfect squares, sequences of integers, and Pythagorean triples, to name a few. A meticulously crafted index helps the reader navigate through the topics with ease. This book serves as an invaluable preparation tool for both aspiring students and those passionate about mathematics alike.
Corneliu Manescu-Avram is a graduate of the Faculty of Mathematics at the University of Bucharest, Romania. In 2010, he obtained the QTS (Qualified Teacher Status) certification. He is an active problem solver and contributor to numerous mathematical journals, including Mathematical Reflections, Crux Mathematicorum, Pi Mu Epsilon Journal, Pentagonal Kappe Mathematical Journal, Mathematical Excalibur, School Science and Mathematics, Mathematical Recreations (in Romanian), and Mathematical Review from Timi oara (in Romanian). Manescu-Avram has worked as a computer programmer and a high school teacher of mathematics, computer science, and astronomy. Although retired, he remains actively engaged in mathematical pursuits.
- About the book.- List of notations.- About the author.- Part I: Problems.- 1968. - 1969. - 1970. - 1971. - 1972. - 1973. - 1974. - 1975. - 1976. - 1977. - 1978. - 1979. - 1980. - 1981. - 1982. - 1983. - 1984. - 1985. - 1986. - 1987. - 1988. - 1989. - 1990. - 1991. - 1992. - 1993. - 1994. - 1995. - 1996. - 1997. - 1998. - 1999. - 2000. - 2001. - 2002. - 2003. - 2004. - 2005. - 2006. - 2007. - 2008. - 2009. - 2010. - 2011. - 2012. - 2013. - 2014. - 2015. - 2016. - 2017. - 2018. - 2019. - 2020. - 2021. - 2022. - 2023. - 2024.- Part II: Solutions.- 1968. - 1969. - 1970. - 1971. - 1972. - 1973. - 1974. - 1975. - 1976. - 1977. - 1978. - 1979. - 1980. - 1981. - 1982. - 1983. - 1984. - 1985. - 1986. - 1987. - 1988. - 1989. - 1990. - 1991. - 1992. - 1993. - 1994. - 1995. - 1996. - 1997. - 1998. - 1999. - 2000. - 2001. - 2002. - 2003. - 2004. - 2005. - 2006. - 2007. - 2008. - 2009. - 2010. - 2011. - 2012. - 2013. - 2014. - 2015. - 2016. - 2017. - 2018. - 2019. - 2020. - 2021. - 2022. - 2023. - 2024.- References.- Appendix.- Index.
Erscheinungsdatum | 30.07.2024 |
---|---|
Reihe/Serie | Problem Books in Mathematics |
Zusatzinfo | XIII, 292 p. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie |
Schlagworte | chinese remainder theorem • Diophantine equation • Fermat's Theorem • IMO • Math Competitions • mathematical Olympiads • Number Theory • perfect square • sequence of integers |
ISBN-10 | 3-031-59741-9 / 3031597419 |
ISBN-13 | 978-3-031-59741-1 / 9783031597411 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich