Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Two-dimensional Two Product Cubic Systems, Vol. III - Albert C. J. Luo

Two-dimensional Two Product Cubic Systems, Vol. III

Self-linear and Crossing Quadratic Product Vector Fields
Buch | Hardcover
X, 284 Seiten
2024
Springer International Publishing (Verlag)
978-3-031-59558-5 (ISBN)
CHF 249,95 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This book is the eleventh of 15 related monographs on Cubic Systems, examines self-linear and crossing-quadratic product systems. It discusses the equilibrium and flow singularity and bifurcations, The double-inflection saddles featured in this volume are the appearing bifurcations for two connected parabola-saddles, and also for saddles and centers. The parabola saddles are for the appearing bifurcations of saddle and center. The inflection-source and sink flows are the appearing bifurcations for connected hyperbolic and hyperbolic-secant flows. Networks of higher-order equilibriums and flows are presented. For the network switching, the inflection-sink and source infinite-equilibriums exist, and parabola-source and sink infinite-equilibriums are obtained. The equilibrium networks with connected hyperbolic and hyperbolic-secant flows are discussed. The inflection-source and sink infinite-equilibriums are for the switching bifurcation of two equilibrium networks. 

 

Dr. Albert C. J. Luo is a Distinguished Research Professor at the Southern Illinois University Edwardsville, in Edwardsville, IL, USA. Dr. Luo worked on Nonlinear Mechanics, Nonlinear Dynamics, and Applied Mathematics. He proposed and systematically developed: (i) the discontinuous dynamical system theory, (ii) analytical solutions for periodic motions in nonlinear dynamical systems, (iii) the theory of dynamical system synchronization, (iv) the accurate theory of nonlinear deformable-body dynamics, (v) new theories for stability and bifurcations of nonlinear dynamical systems. He discovered new phenomena in nonlinear dynamical systems. His methods and theories can help understanding and solving the Hilbert sixteenth problems and other nonlinear physics problems. The main results were scattered in 45 monographs in Springer, Wiley, Elsevier, and World Scientific, over 200 prestigious journal papers, and over 150 peer-reviewed conference papers.

 

Self-linear and Crossing-quadratic Product Systems.-Double-inflection Saddles and Switching Dynamics.-Horizontally Connected Parabola-saddles.-Vertically Connected Parabola-saddles.- Equilibrium Networks and Switching Bifurcations.

Erscheinungsdatum
Zusatzinfo X, 284 p. 72 illus., 71 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Angewandte Mathematik
Technik
Schlagworte Connected hyperbolic and hyperbolic-secant flows • Constant and product-cubic systems • Hyperbolic and hyperbolic-secant flows • Infinite-equilibrium switching bifurcations • Inflection-sinks and sources • Inflection-source (sink) Infinite-equilibriums I • Inflection-source (sink) Infinite-equilibriums I • Linear-univariate and product-cubic systems • Parabola-saddle bifurcations • Saddle-source (sink) bifurcations • Self-linear and Crossing-quadratic Product Systems • Self-linear and crossing-quadratic product vector fields • Separated hyperbolic and hyperbolic-secant flows
ISBN-10 3-031-59558-0 / 3031595580
ISBN-13 978-3-031-59558-5 / 9783031595585
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Anwendungen und Theorie von Funktionen, Distributionen und Tensoren

von Michael Karbach

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 97,90