Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The Second Duals of Beurling Algebras - H.G. Dales, Anthony To-Ming Lau

The Second Duals of Beurling Algebras

Buch | Softcover
191 Seiten
2005 | illustrated Edition
American Mathematical Society (Verlag)
978-0-8218-3774-0 (ISBN)
CHF 123,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Let $A$ be a Banach algebra, with second dual space $A""$. We propose to study the space $A""$ as a Banach algebra. There are two Banach algebra products on $A""$, denoted by $/,/Box/,$ and $/,/Diamond/,$. The Banach algebra $A$ is Arens regular if the two products $/Box$ and $/Diamond$ coincide on $A""$. In fact, $A""$ has two topological centers denoted by $/mathfrak{Z}^{(1)}_t(A"")$ and $/mathfrak{Z}^{(2)}_t(A"")$ with $A /subset /mathfrak{Z}^{(j)}_t(A"")/subset A""/;/,(j=1,2)$, and $A$ is Arens regular if and only if $/mathfrak{Z}^{(1)}_t(A"")=/mathfrak{Z}^{(2)}_t(A"")=A""$. At the other extreme, $A$ is strongly Arens irregular if $/mathfrak{Z}^{(1)}_t(A"")=/mathfrak{Z}^{(2)}_t(A"")=A$. We shall give many examples to show that these two topological centers can be different, and can lie strictly between $A$ and $A""$.We shall discuss the algebraic structure of the Banach algebra $(A"",/,/Box/,)V$; in particular, we shall seek to determine its radical and when this algebra has a strong Wedderburn decomposition. We are also particularly concerned to discuss the algebraic relationship between the two algebras $(A"",/,/Box/,)$ and $(A"",/,/Diamond/,)$. Most of our theory and examples will be based on a study of the weighted Beurling algebras $L^1(G,/omega)$, where $/omega$ is a weight function on the locally compact group $G$. The case where $G$ is discrete and the algebra is ${/ell}^{/,1}(G, /omega)$ is particularly important.We shall also discuss a large variety of other examples. These include a weight $/omega$ on $/mathbb{Z}$ such that $/ell^{/,1}(/mathbb{Z},/omega)$ is neither Arens regular nor strongly Arens irregular, and such that the radical of $(/ell^{/,1}(/mathbb{Z},/omega)"", /,/Box/,)$ is a nilpotent ideal of index exactly $3$, and a weight $/omega$ on $/mathbb{F}_2$ such that two topological centers of the second dual of $/ell^{/,1}(/mathbb{F}_2, /omega)$ may be different, and that the radicals of the two second duals may have different indices of nilpotence.

Introduction Definitions and preliminary results Repeated limit conditions Examples Introverted subspaces Banach algebras of operators Beurling algebras The second dual of $/ell^1(G,/omega)$ Algebras on discrete, Abelian groups Beurling algebras on $/mathbb{F}_2$ Topological centres of duals of introverted subspaces The second dual of $L^1(G,/omega)$ Derivations into second duals Open questions Bibliography Index Index of symbols.

Erscheint lt. Verlag 1.9.2005
Reihe/Serie Memoirs of the American Mathematical Society
Zusatzinfo Illustrations
Verlagsort Providence
Sprache englisch
Gewicht 373 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
ISBN-10 0-8218-3774-5 / 0821837745
ISBN-13 978-0-8218-3774-0 / 9780821837740
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich