Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Web and Big Data -

Web and Big Data

7th International Joint Conference, APWeb-WAIM 2023, Wuhan, China, October 6–8, 2023, Proceedings, Part IV
Buch | Softcover
521 Seiten
2024 | 2024 ed.
Springer Nature (Verlag)
978-981-97-2420-8 (ISBN)
CHF 109,95 inkl. MwSt
  • Versand in 10-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
The 4-volume set LNCS 14331, 14332, 14333, and 14334 constitutes the refereed proceedings of the 7th International Joint Conference, APWeb-WAIM 2023, which took place in Wuhan, China, in October 2023.

The total of 138 papers included in the proceedings were carefully reviewed and selected from 434 submissions.
The 4-volume set LNCS 14331, 14332, 14333, and 14334 constitutes the refereed proceedings of the 7th International Joint Conference, APWeb-WAIM 2023, which took place in Wuhan, China, in October 2023.



The total of 138 papers included in the proceedings were carefully reviewed and selected from 434 submissions. They focus on innovative ideas, original research findings, case study results, and experienced insights in the areas of the World Wide Web and big data, covering Web technologies, database systems, information management, software engineering, knowledge graph, recommend system and big data.
Erscheinungsdatum
Reihe/Serie Lecture Notes in Computer Science
Zusatzinfo 164 Illustrations, color; 40 Illustrations, black and white; XVIII, 521 p. 204 illus., 164 illus. in color.
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Algorithmen
Schlagworte Computer Networks • Computer Security • Data Mining • Information Retrieval • machine learning • Network Protocols • privacy • Recommendation • Recommender Systems • Signal Processing • Telecommunication Systems
ISBN-10 981-97-2420-1 / 9819724201
ISBN-13 978-981-97-2420-8 / 9789819724208
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich