Python Recipes for Earth Sciences
Springer International Publishing (Verlag)
978-3-031-56905-0 (ISBN)
Python is used in a wide range of geoscientific applications, such as in processing images for remote sensing, in generating and processing digital elevation models, and in analyzing time series. This book introduces methods of data analysis in the geosciences using Python that include basic statistics for univariate, bivariate, and multivariate data sets, time series analysis, and signal processing; the analysis of spatial and directional data; and image analysis. The text includes numerous examples that demonstrate how Python can be used on data sets from the earth sciences. Codes are available online through GitHub.
Martin H. Trauth studied geophysics and geology at the University of Karlsruhe. He obtained a doctoral degree from the University of Kiel in 1995 and then became a permanent member of the scientific staff at the University of Potsdam. Following his habilitation in 2003 he became a lecturer, and then in 2011 a titular professor at the University of Potsdam. Since 1990 he has worked on various aspects of past changes in the climates of East Africa and South America. His projects have aimed to understand the role of the tropics in terminating ice ages, the relationship between climatic changes and human evolution, and the influence that climate anomalies had on mass movements in the central Andes. Each of these projects has involved the use of MATLAB to apply numerical and statistical methods (such as time-series analysis and signal processing) to paleoclimate time series, lake-balance modeling, stochastic modeling of bioturbation, age-depth modeling of sedimentary sequences, or the processing of satellite and microscope images. Martin H. Trauth has been teaching a variety of courses on data analysis in earth sciences with MATLAB for more than 25 years, both at the University of Potsdam and at other universities around the world.
Data Analysis in the Earth Sciences.- Introduction to Python.- Univariate Statistics.- Bivariate Statistics.- Time Series Analysis.- Signal Processing.- Spatial Data.- Image Processing.- Multivariate Statistics.- Directional Data.
Erscheinungsdatum | 09.10.2024 |
---|---|
Reihe/Serie | Springer Textbooks in Earth Sciences, Geography and Environment |
Zusatzinfo | XI, 491 p. 148 illus., 127 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Informatik |
Naturwissenschaften ► Geowissenschaften ► Geografie / Kartografie | |
Naturwissenschaften ► Geowissenschaften ► Geologie | |
Naturwissenschaften ► Geowissenschaften ► Geophysik | |
Schlagworte | climate time series analysis • computational Geosciences • Digital Elevation Models • geomodeling • Geostatistics |
ISBN-10 | 3-031-56905-9 / 3031569059 |
ISBN-13 | 978-3-031-56905-0 / 9783031569050 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich