Nicht aus der Schweiz? Besuchen Sie lehmanns.de

MLOps with Red Hat OpenShift (eBook)

A cloud-native approach to machine learning operations
eBook Download: EPUB
2024
238 Seiten
Packt Publishing (Verlag)
978-1-80512-585-3 (ISBN)

Lese- und Medienproben

MLOps with Red Hat OpenShift - Ross Brigoli, Faisal Masood
Systemvoraussetzungen
32,39 inkl. MwSt
(CHF 31,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

MLOps with OpenShift offers practical insights for implementing MLOps workflows on the dynamic OpenShift platform. As organizations worldwide seek to harness the power of machine learning operations, this book lays the foundation for your MLOps success. Starting with an exploration of key MLOps concepts, including data preparation, model training, and deployment, you'll prepare to unleash OpenShift capabilities, kicking off with a primer on containers, pods, operators, and more.
With the groundwork in place, you'll be guided to MLOps workflows, uncovering the applications of popular machine learning frameworks for training and testing models on the platform.
As you advance through the chapters, you'll focus on the open-source data science and machine learning platform, Red Hat OpenShift Data Science, and its partner components, such as Pachyderm and Intel OpenVino, to understand their role in building and managing data pipelines, as well as deploying and monitoring machine learning models.
Armed with this comprehensive knowledge, you'll be able to implement MLOps workflows on the OpenShift platform proficiently.


Build and manage MLOps pipelines with this practical guide to using Red Hat OpenShift Data Science, unleashing the power of machine learning workflowsKey FeaturesGrasp MLOps and machine learning project lifecycle through concept introductionsGet hands on with provisioning and configuring Red Hat OpenShift Data ScienceExplore model training, deployment, and MLOps pipeline building with step-by-step instructionsPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionMLOps with OpenShift offers practical insights for implementing MLOps workflows on the dynamic OpenShift platform. As organizations worldwide seek to harness the power of machine learning operations, this book lays the foundation for your MLOps success. Starting with an exploration of key MLOps concepts, including data preparation, model training, and deployment, you'll prepare to unleash OpenShift capabilities, kicking off with a primer on containers, pods, operators, and more. With the groundwork in place, you ll be guided to MLOps workflows, uncovering the applications of popular machine learning frameworks for training and testing models on the platform. As you advance through the chapters, you ll focus on the open-source data science and machine learning platform, Red Hat OpenShift Data Science, and its partner components, such as Pachyderm and Intel OpenVino, to understand their role in building and managing data pipelines, as well as deploying and monitoring machine learning models. Armed with this comprehensive knowledge, you ll be able to implement MLOps workflows on the OpenShift platform proficiently.What you will learnBuild a solid foundation in key MLOps concepts and best practicesExplore MLOps workflows, covering model development and trainingImplement complete MLOps workflows on the Red Hat OpenShift platformBuild MLOps pipelines for automating model training and deploymentsDiscover model serving approaches using Seldon and Intel OpenVinoGet to grips with operating data science and machine learning workloads in OpenShiftWho this book is forThis book is for MLOps and DevOps engineers, data architects, and data scientists interested in learning the OpenShift platform. Particularly, developers who want to learn MLOps and its components will find this book useful. Whether you re a machine learning engineer or software developer, this book serves as an essential guide to building scalable and efficient machine learning workflows on the OpenShift platform.]]>
Erscheint lt. Verlag 31.1.2024
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80512-585-0 / 1805125850
ISBN-13 978-1-80512-585-3 / 9781805125853
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 13,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 18,25