Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Data Engineering with Scala and Spark (eBook)

Build streaming and batch pipelines that process massive amounts of data using Scala
eBook Download: EPUB
2024
300 Seiten
Packt Publishing (Verlag)
978-1-80461-432-7 (ISBN)

Lese- und Medienproben

Data Engineering with Scala and Spark - Eric Tome, Rupam Bhattacharjee, David Radford
Systemvoraussetzungen
27,59 inkl. MwSt
(CHF 26,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Most data engineers know that performance issues in a distributed computing environment can easily lead to issues impacting the overall efficiency and effectiveness of data engineering tasks. While Python remains a popular choice for data engineering due to its ease of use, Scala shines in scenarios where the performance of distributed data processing is paramount.
This book will teach you how to leverage the Scala programming language on the Spark framework and use the latest cloud technologies to build continuous and triggered data pipelines. You'll do this by setting up a data engineering environment for local development and scalable distributed cloud deployments using data engineering best practices, test-driven development, and CI/CD. You'll also get to grips with DataFrame API, Dataset API, and Spark SQL API and its use. Data profiling and quality in Scala will also be covered, alongside techniques for orchestrating and performance tuning your end-to-end pipelines to deliver data to your end users.
By the end of this book, you will be able to build streaming and batch data pipelines using Scala while following software engineering best practices.


Take your data engineering skills to the next level by learning how to utilize Scala and functional programming to create continuous and scheduled pipelines that ingest, transform, and aggregate dataKey FeaturesTransform data into a clean and trusted source of information for your organization using ScalaBuild streaming and batch-processing pipelines with step-by-step explanationsImplement and orchestrate your pipelines by following CI/CD best practices and test-driven development (TDD)Purchase of the print or Kindle book includes a free PDF eBookBook DescriptionMost data engineers know that performance issues in a distributed computing environment can easily lead to issues impacting the overall efficiency and effectiveness of data engineering tasks. While Python remains a popular choice for data engineering due to its ease of use, Scala shines in scenarios where the performance of distributed data processing is paramount. This book will teach you how to leverage the Scala programming language on the Spark framework and use the latest cloud technologies to build continuous and triggered data pipelines. You ll do this by setting up a data engineering environment for local development and scalable distributed cloud deployments using data engineering best practices, test-driven development, and CI/CD. You ll also get to grips with DataFrame API, Dataset API, and Spark SQL API and its use. Data profiling and quality in Scala will also be covered, alongside techniques for orchestrating and performance tuning your end-to-end pipelines to deliver data to your end users. By the end of this book, you will be able to build streaming and batch data pipelines using Scala while following software engineering best practices.What you will learnSet up your development environment to build pipelines in ScalaGet to grips with polymorphic functions, type parameterization, and Scala implicitsUse Spark DataFrames, Datasets, and Spark SQL with ScalaRead and write data to object storesProfile and clean your data using DeequPerformance tune your data pipelines using ScalaWho this book is forThis book is for data engineers who have experience in working with data and want to understand how to transform raw data into a clean, trusted, and valuable source of information for their organization using Scala and the latest cloud technologies.
Erscheint lt. Verlag 31.1.2024
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Informatik Software Entwicklung User Interfaces (HCI)
ISBN-10 1-80461-432-7 / 1804614327
ISBN-13 978-1-80461-432-7 / 9781804614327
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
CHF 48,75
Achieve data excellence by unlocking the full potential of MongoDB

von Marko Aleksendrić; Arek Borucki; Leandro Domingues …

eBook Download (2024)
Packt Publishing (Verlag)
CHF 52,75