A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems
Springer (Verlag)
978-0-7923-5487-1 (ISBN)
1 Introduction.- I Discrete Nonconvex Programs.- 2 RLT Hierarchy for Mixed-Integer Zero-One Problems.- 3 Generalized Hierarchy for Exploiting Special Structures in Mixed-Integer Zero-One Problems.- 4 RLT Hierarchy for General Discrete Mixed-Integer Problems.- 5 Generating Valid Inequalities and Facets Using RLT.- 6 Persistency in Discrete Optimization.- II Continuous Nonconvex Programs.- 7 RLT-Based Global Optimization Algorithms for Nonconvex Polynomial Programming Problems.- 8 Reformulation-Convexification Technique for Quadratic Programs and Some Convex Envelope Characterizations.- 9 Reformulation-Convexification Technique for Polynomial Programs: Design and Implementation.- III Special Applications to Discrete and Continuous Nonconvex Programs.- 10 Applications to Discrete Problems.- 11 Applications to Continuous Problems.- References.
Erscheint lt. Verlag | 31.12.1998 |
---|---|
Reihe/Serie | Nonconvex Optimization and Its Applications ; 31 |
Zusatzinfo | XXIV, 518 p. |
Verlagsort | Dordrecht |
Sprache | englisch |
Maße | 156 x 234 mm |
Themenwelt | Mathematik / Informatik ► Informatik |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 0-7923-5487-7 / 0792354877 |
ISBN-13 | 978-0-7923-5487-1 / 9780792354871 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich