Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Praxiseinstieg Large Language Models

Strategien und Best Practices für den Einsatz von ChatGPT und anderen LLMs

(Autor)

Buch | Softcover
274 Seiten
2024 | 1. Auflage
O'Reilly (Verlag)
978-3-96009-240-7 (ISBN)
CHF 55,85 inkl. MwSt
  • Das Buch bietet einen Überblick über zentrale Konzepte und Techniken von LLMs wie z.B. ChatGPT und zeigt das Potenzial von Open-Source- und Closed-Source-Modellen
  • Es erläutert, wie Large Language Models funktionieren und wie sie für Aufgaben des Natural Language Processing (NLP) genutzt werden
  • Auch für interessierte Nicht-Data-Scientists mit Python-Kenntnissen verständlich
  • Themen z.B.: die ChatGPT-API, Prompt-Engineering, Chatbot-Personas, Cloud-Bereitstellung; deckt auch GPT-4 ab

Der Schnellstart in die praktische Arbeit mit LLMs

Large Language Models (LLMs) wie ChatGPT zeigen erstaunliche Fähigkeiten, aber ihre Größe und Komplexität halten viele Praktiker*innen davon ab, sie in ihren eigenen Anwendungen einzusetzen. In dieser Einführung räumt Data Scientist und KI-Unternehmer Sinan Ozdemir diese Hindernisse aus dem Weg und bietet einen Leitfaden für den Einsatz von LLMs zur Lösung praktischer NLP-Probleme.

Sinan Ozdemir hat alles zusammengestellt, was Sie für den Einstieg brauchen, auch wenn Sie noch keine Erfahrung mit LLMs haben: Schritt-für-Schritt-Anleitungen, Best Practices, Fallstudien aus der Praxis, Übungsaufgaben und vieles mehr. Dabei zeigt er das Potenzial sowohl von Closed-Source- als auch von Open-Source-LLMs wie GPT-3, GPT-4 und ChatGPT, BERT und T5, GPT-J und GPT-Neo, Cohere sowie BART.

  • Lernen Sie die Schlüsselkonzepte kennen: Transfer Learning, Feintuning, Attention, Embeddings, Tokenisierung und mehr
  • Nutzen Sie APIs und Python, um LLMs an Ihre Anforderungen anzupassen
  • Beherrschen Sie Prompt-Engineering-Techniken wie Ausgabe-Strukturierung, Gedankenketten und Few-Shot-Prompting
  • Passen Sie LLM-Embeddings an, um eine Empfehlungsengine mit eigenen Benutzerdaten neu zu erstellen
  • Konstruieren Sie multimodale Transformer-Architekturen mithilfe von Open-Source-LLMs
  • Optimieren Sie LLMs mit Reinforcement Learning from Human and AI Feedback (RLHF/RLAIF)
  • Deployen Sie Prompts und benutzerdefinierte, feingetunte LLMs in die Cloud

Sinan Ozdemir hat einen Master in Mathematik und ist ein erfolgreicher KI-Unternehmer und Venture-Capital-Berater. Seine ersten Erfahrungen mit Data Science und Machine Learning (ML) sammelte er während seiner Zeit als Dozent an der Johns Hopkins University, wo er mehrere KI-Patente entwickelte. Später entschied er sich, einen anderen Weg einzuschlagen, und wagte den Sprung in die schnelllebige Welt der Start-ups, indem er sich im kalifornischen Tech-Hotspot San Francisco niederließ. Dort gründete er Kylie.ai, eine innovative Plattform, die die Fähigkeiten der Conversational AI mit Robotic Process Automation (RPA) verschmolz. Kylie.ai wurde schon bald aufgrund ihres überzeugenden Wertversprechens schnell bekannt und 2019 schließlich verkauft. In dieser Zeit begann Sinan, zahlreiche Lehrbücher über Data Science, KI und ML zu verfassen. Seine Mission ist es, über die Fortschritte in diesem Bereich auf dem Laufenden zu bleiben und dieses Wissen an andere weiterzugeben - eine Philosophie, die er noch aus seiner Zeit als Universitätsdozent mitbringt. In seiner derzeitigen Rolle als CTO bei LoopGenius, einem von Venture Capital unterstützten Startup, steht Sinan im Mittelpunkt eines Teams, das die Möglichkeiten von KI-Anwendungen für die Unternehmensgründung und das Management auslotet.

Erscheinungsdatum
Reihe/Serie Animals
Zusatzinfo Illustrationen
Verlagsort Heidelberg
Sprache deutsch
Maße 165 x 240 mm
Einbandart kartoniert
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte AI • attention • Bard • Bart • Bert • Cohere • EleutherAI • Embeddings • GPT-4 • KI • LangChain • Llama • machine learning • Natural Language Processing • NLP • OpenAI • Prompt Engineering • Python • Q&A • Q&A • question answering • T5 • transfer learning • Transformer
ISBN-10 3-96009-240-7 / 3960092407
ISBN-13 978-3-96009-240-7 / 9783960092407
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Eine kurze Geschichte der Informationsnetzwerke von der Steinzeit bis …

von Yuval Noah Harari

Buch | Hardcover (2024)
Penguin (Verlag)
CHF 39,20