Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Bayesian Analysis with Python - Osvaldo Martin

Bayesian Analysis with Python

A practical guide to probabilistic modeling

(Autor)

Buch | Softcover
394 Seiten
2024 | 3rd Revised edition
Packt Publishing Limited (Verlag)
978-1-80512-716-1 (ISBN)
CHF 66,30 inkl. MwSt
Learn the fundamentals of Bayesian modeling using state-of-the-art Python libraries, such as PyMC, ArviZ, Bambi, and more, guided by an experienced Bayesian modeler who contributes to these libraries

Key Features

Conduct Bayesian data analysis with step-by-step guidance
Gain insight into a modern, practical, and computational approach to Bayesian statistical modeling
Enhance your learning with best practices through sample problems and practice exercises
Purchase of the print or Kindle book includes a free PDF eBook.

Book DescriptionThe third edition of Bayesian Analysis with Python serves as an introduction to the main concepts of applied Bayesian modeling using PyMC, a state-of-the-art probabilistic programming library, and other libraries that support and facilitate modeling like ArviZ, for exploratory analysis of Bayesian models; Bambi, for flexible and easy hierarchical linear modeling; PreliZ, for prior elicitation; PyMC-BART, for flexible non-parametric regression; and Kulprit, for variable selection.

In this updated edition, a brief and conceptual introduction to probability theory enhances your learning journey by introducing new topics like Bayesian additive regression trees (BART), featuring updated examples. Refined explanations, informed by feedback and experience from previous editions, underscore the book's emphasis on Bayesian statistics. You will explore various models, including hierarchical models, generalized linear models for regression and classification, mixture models, Gaussian processes, and BART, using synthetic and real datasets.

By the end of this book, you will possess a functional understanding of probabilistic modeling, enabling you to design and implement Bayesian models for your data science challenges. You'll be well-prepared to delve into more advanced material or specialized statistical modeling if the need arises.What you will learn

Build probabilistic models using PyMC and Bambi
Analyze and interpret probabilistic models with ArviZ
Acquire the skills to sanity-check models and modify them if necessary
Build better models with prior and posterior predictive checks
Learn the advantages and caveats of hierarchical models
Compare models and choose between alternative ones
Interpret results and apply your knowledge to real-world problems
Explore common models from a unified probabilistic perspective
Apply the Bayesian framework's flexibility for probabilistic thinking

Who this book is forIf you are a student, data scientist, researcher, or developer looking to get started with Bayesian data analysis and probabilistic programming, this book is for you. The book is introductory, so no previous statistical knowledge is required, although some experience in using Python and scientific libraries like NumPy is expected.

Osvaldo Martin is a researcher at CONICET, in Argentina. He has experience using Markov Chain Monte Carlo methods to simulate molecules and perform Bayesian inference. He loves to use Python to solve data analysis problems. He is especially motivated by the development and implementation of software tools for Bayesian statistics and probabilistic modeling. He is an open-source developer, and he contributes to Python libraries like PyMC, ArviZ and Bambi among others. He is interested in all aspects of the Bayesian workflow, including numerical methods for inference, diagnosis of sampling, evaluation and criticism of models, comparison of models and presentation of results.

Table of Contents

Thinking Probabilistically
Programming Probabilistically
Hierarchical Models
Modeling with Lines
Comparing Models
Modeling with Bambi
Mixture Models
Gaussian Processes
Bayesian Additive Regression Trees
Inference Engines
Where to Go Next

Erscheinungsdatum
Vorwort Christopher Fonnesbeck, Thomas Wiecki
Verlagsort Birmingham
Sprache englisch
Maße 191 x 235 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
ISBN-10 1-80512-716-0 / 1805127160
ISBN-13 978-1-80512-716-1 / 9781805127161
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95