Multimodal and Tensor Data Analytics for Industrial Systems Improvement
Springer International Publishing (Verlag)
978-3-031-53091-3 (ISBN)
Nathan Gaw is Assistant Professor of Operations Research at the Airforce Institute of Technology.
Panos M. Pardalos is Distinguished Professor Emeritus of Industrial and Systems Engineering at the University of Florida. Additionally, he is the Paul and Heidi Brown Preeminent Professor in Industrial & Systems Engineering. He is also an affiliated faculty member of the Computer and Information Science Department, the Hellenic Studies Center, and the Biomedical Engineering Program. He is also the Director of the Center for Applied Optimization. Dr. Pardalos is a world leading expert in global and combinatorial optimization. His recent research interests include network design problems, optimization in telecommunications, e-commerce, data mining, biomedical applications, and massive computing. He has co-authored and co-edited more than 30 books, as well as publishing more than 600 journal articles and conference proceedings. Prof. Pardalos is a Fellow of AAAS (American Association for the Advancement of Science), Fellow of American Institute for Medical and Biological Engineering (AIMBE), and EUROPT. He is a Distinguished International Professor by the Chinese Minister of Education; Honorary Professor of Anhui University of Sciences and Technology, China; Elizabeth Wood Dunlevie Honors Term Professor; Honorary Doctor, V.M. Glushkov Institute of Cybernetics of The National Academy of Sciences of Ukraine; Foreign Associate Member of Reial Academia de Doctors, Spain; and Advisory board member of the Centre for Optimisation and Its Applications, Cardiff University, UK. He is also the recipient of UF 2009 International Educator Award; Medal (in recognition of broad contributions in science and engineering) of the University of Catani, Italy; EURO Gold Medal (EGM); Honorary Doctor of Science Degree, Wilfrid Laurier University, Canada; Senior Fulbright Specialist Award; University of Florida Research Foundation Professorship; and IBM Achievement Award.
Mostafa Reisi Gahrooei is Assistant Professor in Industrial a nd Systems Engineering at the University of Florida. His research interests focus on developing efficient methodologies and algorithms for modeling and monitoring systems through the fusion of high-dimensional and multimodal data. The applications of his work are in precision agriculture, manufacturing, healthcare, and transportation systems. He is a co-director of Data Informatics for Systems Improvement and Design (DISIDE) lab. Dr. Reisi is a member of the Institute for Operations Research and the Management Sciences (INFORMS) and the Institute of Industrial and Systems Engineers (IISE).
Chapter 1: Introduction to multimodal and tensor data analytics.- Chapter 2: Functional Methods for Multimodal Data Analysis.- Chapter 3: Advanced Data Analytical Techniques for Profile Monitoring.- Chapter 4: Statistical process monitoring methods based on functional data analysis.- Chapter 5: Tensor and multimodal data analysis.- Chapter 6: Tensor Data Analytics in Advanced Manufacturing Processes.- Chapter 7: Spatiotemporal Data Analysis - A Review of Techniques, Applications, and Emerging Challenges.- Chapter 8: Offshore Wind Energy Prediction Using Machine Learning with Multi-Resolution Inputs.- Chapter 9: Sparse Decomposition Methods for Spatio-temporal Anomaly Detection.- Chapter 10: Multimodal Deep Learning.- Chapter 11: Multimodal Deep Learning for Manufacturing Systems: Recent Progress and Future Trends.- Chapter 12: Synergy of Engineering and Statistics: Multimodal data Fusion for Quality Improvement.- Chapter 13: Manufacturing data fusion: a case study with steel rollingprocesses.- Chapter 14: AI-enhanced Fault Detection using Multi-structured Data in Semiconductor Manufacturing.- Chapter 15: A Survey of Advances in Multimodal Federated Learning with Applications.- Chapter 16: Bayesian Multimodal Data Analytics: An introduction.- Chapter 17: Bayesian approach to multimodal data in human factors engineering.- Chapter 18: Bayesian Multimodal Models for Risk Analyses of Low-Probability High-Consequence Events.
Erscheinungsdatum | 18.05.2024 |
---|---|
Reihe/Serie | Springer Optimization and Its Applications |
Zusatzinfo | X, 394 p. 100 illus., 95 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | Bayesian multimodal • distributed learning • federated learning • Multimodal Data • multimodel deep learning • Multivariate Statistics • spatio-temporal data • tensor data analytics |
ISBN-10 | 3-031-53091-8 / 3031530918 |
ISBN-13 | 978-3-031-53091-3 / 9783031530913 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich