Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Computational Methods in Biomedical Research -

Computational Methods in Biomedical Research

Buch | Hardcover
432 Seiten
2007
Chapman & Hall/CRC (Verlag)
978-1-58488-577-1 (ISBN)
CHF 235,65 inkl. MwSt
Using real-world data from disease areas, such as cancer and HIV, this book explores important computational statistical methods that are employed in biomedical research. It discusses microarray data analysis, machine learning techniques, and mass spectrometry-based protein profiling.
Continuing advances in biomedical research and statistical methods call for a constant stream of updated, cohesive accounts of new developments so that the methodologies can be properly implemented in the biomedical field. Responding to this need, Computational Methods in Biomedical Research explores important current and emerging computational statistical methods that are used in biomedical research.

Written by active researchers in the field, this authoritative collection covers a wide range of topics. It introduces each topic at a basic level, before moving on to more advanced discussions of applications. The book begins with microarray data analysis, machine learning techniques, and mass spectrometry-based protein profiling. It then uses state space models to predict US cancer mortality rates and provides an overview of the application of multistate models in analyzing multiple failure times. The book also describes various Bayesian techniques, the sequential monitoring of randomization tests, mixed-effects models, and the classification rules for repeated measures data. The volume concludes with estimation methods for analyzing longitudinal data.

Supplying the knowledge necessary to perform sophisticated statistical analyses, this reference is a must-have for anyone involved in advanced biomedical and pharmaceutical research. It will help in the quest to identify potential new drugs for the treatment of a variety of diseases.

Ravindra Khattree, Dayanand N. Naik

Preface. Microarray Data Analysis. Machine Learning Techniques for Bioinformatics: Fundamentals and Applications. Machine Learning Methods for Cancer Diagnosis and Prognostication. Protein Profiling for Disease Proteomics with Mass Spectrometry: Computational Challenges. Predicting US Cancer Mortality Counts Using State Space Models. Analyzing Multiple Failure Time Data Using SAS® Software. Mixed-Effects Models for Longitudinal Virologic and Immunologic HIV Data. Bayesian Computational Methods in Biomedical Research. Sequential Monitoring of Randomization Tests. Proportional Hazards Mixed-Effects Models and Applications. Classification Rules for Repeated Measures Data from Biomedical Research. Estimation Methods for Analyzing Longitudinal Data Occurring in Biomedical Research. Index.

Erscheint lt. Verlag 12.12.2007
Sprache englisch
Maße 156 x 234 mm
Gewicht 748 g
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Medizin / Pharmazie Medizinische Fachgebiete Biomedizin
Naturwissenschaften Biologie
ISBN-10 1-58488-577-7 / 1584885777
ISBN-13 978-1-58488-577-1 / 9781584885771
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95