Nature-Inspired Methods for Smart Healthcare Systems and Medical Data (eBook)
XXIII, 250 Seiten
Springer-Verlag
978-3-031-45952-8 (ISBN)
This book aims to gather high-quality research papers on developing theories, frameworks, architectures, and algorithms for solving complex challenges in smart healthcare applications for real industry use. It explores the recent theoretical and practical applications of metaheuristics and optimization in various smart healthcare contexts. The book also discusses the capability of optimization techniques to obtain optimal parameters in ML and DL technologies. It provides an open platform for academics and engineers to share their unique ideas and investigate the potential convergence of existing systems and advanced metaheuristic algorithms. The book's outcome will enable decision-makers and practitioners to select suitable optimization approaches for scheduling patients in crowded environments with minimized human errors.
The healthcare system aims to improve the lives of disabled, elderly, sick individuals, and children. IoT-based systems simplify decision-making and task automation, offering an automated foundation. Nature-inspired metaheuristics and mining algorithms are crucial for healthcare applications, reducing costs, increasing efficiency, enabling accurate data analysis, and enhancing patient care. Metaheuristics improve algorithm performance and address challenges in data mining and ML, making them essential in healthcare research. Real-time IoT-based healthcare systems can be modeled using an IoT-based metaheuristic approach to generate optimal solutions.
Metaheuristics are powerful technologies for optimization problems in healthcare systems. They balance exact methods, which guarantee optimal solutions but require significant computational resources, with fast but low-quality greedy methods. Metaheuristic algorithms find better solutions while minimizing computational time. The scientific community is increasingly interested in metaheuristics, incorporating techniques from AI, operations research, and soft computing. New metaheuristics offer efficient ways to address optimization problems and tackle unsolved challenges. They can be parameterized to control performance and adjust the trade-off between solution quality and resource utilization. Metaheuristics manage the trade-off between performance and solution quality, making them highly applicable to real-time applications with pragmatic objectives.
Dr. Ahmed M. Anter is an Associate Professor of Computer Science at the Computer Science and Information Technology (CSIT), Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt. Anter is also with the Computers and Artificial Intelligence, Beni-suef University, Egypt. Anter received M.Sc. and Ph.D. degrees in computer science from the Faculty of Computer Science and Information Systems, Mansoura University, in 2010 and 2016, respectively. From2006 to 2010, he was a team leader of software development at CITC, Mansoura University, and from 2011 to 2014, he was a lecturer at the Faculty of Computer Science and Information Systems, Jazan University, Saudi Arabia. Also, Anter joined Shenzhen University as a post-doctoral fellow with the School of Biomedical Engineering, China, from 2018-2021. He has a good publication record with over 70 scientific research publications and serves as a reviewer for various international journals and conferences. Also, Anter serves as academic editor for prestigious journals. His main research interests include pattern recognition and intelligent systems, Human Computer Brain, Computational Neuroscience, machine learning, medical image processing, meta-heuristics, optimization, neuroscience, and fuzzy systems.
Erscheint lt. Verlag | 1.12.2023 |
---|---|
Zusatzinfo | XXIII, 250 p. 100 illus., 62 illus. in color. |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Android-based Application • Artificial Intelligence (AI) • Big Data • Blockchain • Cloud • Covid-19 • Data Mining • Decision-Making • Deep learning • EEG-based Identification • Feature Selection • Forensic • Healthcare • machine learning • Metaheuristics • Nature Inspired Methods • Optimization, Internet of Things (IoT) • Personalized medicine • privacy preserving • Wireless Body Area Network (WBAN) |
ISBN-10 | 3-031-45952-0 / 3031459520 |
ISBN-13 | 978-3-031-45952-8 / 9783031459528 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 14,2 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich