Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Introduction to Data Science - Laura Igual, Santi Seguí

Introduction to Data Science

A Python Approach to Concepts, Techniques and Applications
Buch | Softcover
XIV, 246 Seiten
2024 | 2nd ed. 2024
Springer International Publishing (Verlag)
978-3-031-48955-6 (ISBN)
CHF 67,35 inkl. MwSt

This accessible and classroom-tested textbook/reference presents an introduction to the fundamentals of the interdisciplinary field of data science. The coverage spans key concepts from statistics, machine/deep learning and responsible data science, useful techniques for network analysis and natural language processing, and practical applications of data science such as recommender systems or sentiment analysis. 

Topics and features: 

  • Provides numerous practical case studies using real-world data throughout the book 
  • Supports understanding through hands-on experience of solving data science problems using Python 
  • Describes concepts, techniques and tools for statistical analysis, machine learning, graph analysis, natural language processing, deep learning and responsible data science
  • Reviews a range of applications of data science, including recommender systems and sentiment analysis of text data 
  • Provides supplementary code resources and data at an associated website 

This practically-focused textbook provides an ideal introduction to the field for upper-tier undergraduate and beginning graduate students from computer science, mathematics, statistics, and other technical disciplines. The work is also eminently suitable for professionals on continuous education short courses, and to researchers following self-study courses.

Dr. Laura Igual is an Associate Professor at the Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Spain. Dr. Santi Seguí is an Associate Professor at the same institution.

The authors wish to mention that some chapters were co-written by Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera.


1. Introduction to Data Science.- 2. Toolboxes for Data Scientists.- 3. Descriptive statistics.- 4. Statistical Inference.- 5. Supervised Learning.- 6. Regression Analysis.- 7. Unsupervised Learning.- 8. Network Analysis.- 9. Recommender Systems.- 10. Statistical Natural Language Processing for Sentiment Analysis.- 11. Parallel Computing.

Erscheinungsdatum
Reihe/Serie Undergraduate Topics in Computer Science
Co-Autor Jordi Vitrià, Eloi Puertas, Petia Radeva, Oriol Pujol, Sergio Escalera, Francesc Dantí
Zusatzinfo XIV, 246 p. 82 illus., 78 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Schlagworte Data Science • graph analysis • Parallel Computing • Python programming • Statistical Inference
ISBN-10 3-031-48955-1 / 3031489551
ISBN-13 978-3-031-48955-6 / 9783031489556
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Grundkurs für Ausbildung und Praxis

von Ralf Adams

Buch (2023)
Carl Hanser (Verlag)
CHF 41,95
Modern data warehouse, data fabric, data lakehouse und data mesh …

von James Serra

Buch | Softcover (2024)
O'Reilly (Verlag)
CHF 55,85