Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Introduction to Responsible AI - Avinash Manure, Shaleen Bengani, Saravanan S

Introduction to Responsible AI (eBook)

Implement Ethical AI Using Python
eBook Download: PDF
2023 | First Edition
IX, 184 Seiten
Apress (Verlag)
978-1-4842-9982-1 (ISBN)
Systemvoraussetzungen
46,99 inkl. MwSt
(CHF 45,90)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Learn and implement responsible AI models using Python. This book will teach you how to balance ethical challenges with opportunities in artificial intelligence.

The book starts with an introduction to the fundamentals of AI, with special emphasis given to the key principles of responsible AI. The authors then walk you through the critical issues of detecting and mitigating bias, making AI decisions understandable, preserving privacy, ensuring security, and designing robust models. Along the way, you'll gain an overview of tools, techniques, and code examples to implement the key principles you learn in real-world scenarios.

The book concludes with a chapter devoted to fostering a deeper understanding of responsible AI's profound implications for the future. Each chapter offers a hands-on approach, enriched with practical insights and code snippets, enabling you to translate ethical considerations into actionable solutions.

What You Will Learn

  • Understand the principles of responsible AI and their importance in today's digital world
  • Master techniques to detect and mitigate bias in AI
  • Explore methods and tools for achieving transparency and explainability
  • Discover best practices for privacy preservation and security in AI
  • Gain insights into designing robust and reliable AI models

Who This Book Is For

AI practitioners, data scientists, machine learning engineers, researchers, policymakers, and students interested in the ethical aspects of AI

Avinash Manure is a seasoned machine learning professional with more than ten  years of experience in building, deploying, and maintaining state-of-the-art machine learning solutions across different industries. He has more than six years of experience in leading and mentoring high performance teams in developing ML systems catering to different business requirements. He is proficient in deploying complex machine learning and statistical modeling algorithms/ and techniques for identifying patterns and extracting valuable insights for key stakeholders and organizational leadership.

He is the author of Learn Tensorflow 2.0 and Introduction to Prescriptive AI, both with Apress.

Avinash holds a bachelor's degree in Electronics Engineering from Mumbai University and earned his Masters in Business Administration (Marketing) from the University of Pune. He resides in Bangalore with his wife and child. He enjoys travelling to new places and reading motivational books.

Shaleen is a machine learning engineer with 4+ years of experience in building, deploying, and managing cutting-edge machine learning solutions across varied industries. He has developed several frameworks and platforms that have significantly streamlined processes and improved efficiency of machine learning teams.

Shaleen Bengani has authored the book Operationalizing Machine Learning Pipelines as well as three research papers in the deep learning space.

He holds a bachelors degree in Computer Science and Engineering from BITS Pilani, Dubai Campus, where he was awarded the Director's Medal for outstanding all-around performance. In his leisure time, he likes playing table tennis and reading.

Saravanan S is an AI engineer with more than six years of experience in data science and data engineering. He has developed robust data pipelines for developing and deploying advanced machine learning models, genratinginsightful reports, and ensuring cutting edge solutions for diverse industries.

Saravanan earned a masters degree in statistics from Loyola College from Chennai. In his spare time he likes traveling, reading books and playing games.
Learn and implement responsible AI models using Python. This book will teach you how to balance ethical challenges with opportunities in artificial intelligence.The book starts with an introduction to the fundamentals of AI, with special emphasis given to the key principles of responsible AI. The authors then walk you through the critical issues of detecting and mitigating bias, making AI decisions understandable, preserving privacy, ensuring security, and designing robust models. Along the way, you ll gain an overview of tools, techniques, and code examples to implement the key principles you learn in real-world scenarios.The book concludes with a chapter devoted to fostering a deeper understanding of responsible AI s profound implications for the future. Each chapter offers a hands-on approach, enriched with practical insights and code snippets, enabling you to translate ethical considerations into actionable solutions. What You Will LearnUnderstand the principles of responsible AI and their importance in today's digital worldMaster techniques to detect and mitigate bias in AIExplore methods and tools for achieving transparency and explainabilityDiscover best practices for privacy preservation and security in AIGain insights into designing robust and reliable AI modelsWho This Book Is ForAI practitioners, data scientists, machine learning engineers, researchers, policymakers, and students interested in the ethical aspects of AI
Erscheint lt. Verlag 22.11.2023
Zusatzinfo IX, 184 p. 18 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte Accountability in AI • AI ethics • Artificial Intelligence • machine learning • Python • responsible AI • Security in AI
ISBN-10 1-4842-9982-5 / 1484299825
ISBN-13 978-1-4842-9982-1 / 9781484299821
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95