Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Deep Learning for Power System Applications (eBook)

Case Studies Linking Artificial Intelligence and Power Systems

, (Autoren)

eBook Download: PDF
2023
XII, 101 Seiten
Springer International Publishing (Verlag)
978-3-031-45357-1 (ISBN)

Lese- und Medienproben

Deep Learning for Power System Applications - Fangxing Li, Yan Du
Systemvoraussetzungen
106,99 inkl. MwSt
(CHF 104,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book provides readers with an in-depth review of deep learning-based techniques and discusses how they can benefit power system applications. Representative case studies of deep learning techniques in power systems are investigated and discussed, including convolutional neural networks (CNN) for power system security screening and cascading failure assessment, deep neural networks (DNN) for demand response management, and deep reinforcement learning (deep RL) for heating, ventilation, and air conditioning (HVAC) control.

Deep Learning for Power System Applications: Case Studies Linking Artificial Intelligence and Power Systems is an ideal resource for professors, students, and industrial and government researchers in power systems, as well as practicing engineers and AI researchers.

  • Provides a history of AI in power grid operation and planning;
  • Introduces deep learning algorithms and applications in power systems;
  • Includes several representative case studies.


Fangxing 'Fran' Li received his B.S.E.E. and M.S.E.E. degrees from Southeast University, Nanjing, in 1994 and 1997, respectively, and his Ph.D. from Virginia Tech, Blacksburg, VA, in 2001. He is the James McConnell Professor with the University of Tennessee, Knoxville, TN. His research interests include power system artificial intelligence, renewable energy integration, demand response, power markets, and power system control. He is a registered Professional Engineer (P.E.) in the State of North Carolina, a Fellow of the IEEE (Class of 2017), the current Editor-In-Chief of IEEE Open Access Journal of Power and Energy (OAJPE), the current Chair of the IEEE/PES Power System Operation, Planning and Economics (PSOPE) committee, and the current Chair of the IEEE/PES Task Force on Machine Learning in Power Systems. He received the 2020 Best Paper Award from the Journal of Modern Power Systems and Clean Energy (MPCE), the Third Prize Paper Award from CSEE Journal of Power and Energy Systems (JPES) in 2019, the 2019 IEEE/PES Technical Committee Prize Paper Award, the Applied Energy Highly Cited Paper Awards three times for papers published in 2016, 2020, and 2021, and six Best Conference Papers/Posters awards. As a Principal Investigator, he received the prestigious 2020 R&D 100 Finalist honor for the project 'DCNNN (Deep Convolutional Neural Network for N-1)' which is closely related to this book. Also, as a Principal Investigator, he received the prestigious R&D 100 Award in 2020 for the project 'CURENT LTB (Large-scale Test Bed)'.

Yan Du received her B.S. degree from Tianjin University, Tianjin, in 2013, an M.S. degree from the Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, in 2016, and her Ph.D. degree from The University of Tennessee (UT) in 2020. She received the UT EECS Department Outstanding Graduate Research Assistant award in 2019,  the UT Chancellor's Citation Award in Extraordinary Professional Promise in 2020, and the UT Min Kao Fellowship in 2019-2020. Presently, she is a software engineer at Google, Seattle, WA. Her research interest is deep learning in power systems. As the lead developer, she was a co-recipient of the prestigious R&D 100 Finalist honor in 2020 for the project 'DCNNN (Deep Convolutional Neural Network for N-1)' which is closely related to this book.
Erscheint lt. Verlag 10.11.2023
Reihe/Serie Power Electronics and Power Systems
Power Electronics and Power Systems
Zusatzinfo XII, 101 p. 32 illus., 30 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Wirtschaft
Schlagworte AlphaGo • Cascading failure • convolutional neural network • Deep deterministic policy gradient • Deep learning • Deep Neural Network • Deep Reinforcement Learning • demand response • Microgrid • Power Systems • Security Screening
ISBN-10 3-031-45357-3 / 3031453573
ISBN-13 978-3-031-45357-1 / 9783031453571
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 18,25