Polynomial Mappings
Seiten
1995
|
1995
Springer Berlin (Verlag)
978-3-540-59435-2 (ISBN)
Springer Berlin (Verlag)
978-3-540-59435-2 (ISBN)
The book deals with certain algebraic and arithmetical questions concerning polynomial mappings in one or several variables. Algebraic properties of the ring Int(R) of polynomials mapping a given ring R into itself are presented in the first part, starting with classical results of Polya, Ostrowski and Skolem. The second part deals with fully invariant sets of polynomial mappings F in one or several variables, i.e. sets X satisfying F(X)=X . This includes in particular a study of cyclic points of such mappings in the case of rings of algebrai integers. The text contains several exercises and a list of open problems.
Rings of integral-valued polynomials.- Fully invariant sets for polynomial mappings.
Erscheint lt. Verlag | 20.6.1995 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | VIII, 140 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 234 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | Algebra • arithmetic • Integral • Invariant • mapping • Polya • polynomial • Ring • Sets • Variable |
ISBN-10 | 3-540-59435-3 / 3540594353 |
ISBN-13 | 978-3-540-59435-2 / 9783540594352 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich