Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Machine Learning for Emotion Analysis in Python (eBook)

Build AI-powered tools for analyzing emotion using natural language processing and machine learning
eBook Download: EPUB
2023
334 Seiten
Packt Publishing (Verlag)
978-1-80324-671-0 (ISBN)

Lese- und Medienproben

Machine Learning for Emotion Analysis in Python - Allan Ramsay, Tariq Ahmad
Systemvoraussetzungen
35,99 inkl. MwSt
(CHF 35,15)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Artificial intelligence and machine learning are the technologies of the future, and this is the perfect time to tap into their potential and add value to your business. Machine Learning for Emotion Analysis in Python helps you employ these cutting-edge technologies in your customer feedback system and in turn grow your business exponentially.

With this book, you'll take your foundational data science skills and grow them in the exciting realm of emotion analysis. By following a practical approach, you'll turn customer feedback into meaningful insights assisting you in making smart and data-driven business decisions.

The book will help you understand how to preprocess data, build a serviceable dataset, and ensure top-notch data quality. Once you're set up for success, you'll explore complex ML techniques, uncovering the concepts of deep neural networks, support vector machines, conditional probabilities, and more. Finally, you'll acquire practical knowledge using in-depth use cases showing how the experimental results can be transformed into real-life examples and how emotion mining can help track short- and long-term changes in public opinion.

By the end of this book, you'll be well-equipped to use emotion mining and analysis to drive business decisions.


Kickstart your emotion analysis journey with this step-by-step guide to data science successKey FeaturesDiscover the inner workings of the end-to-end emotional analysis workflowExplore the use of various ML models to derive meaningful insights from dataHone your craft by building and tweaking complex emotion analysis models with practical projectsPurchase of the print or Kindle book includes a free PDF eBookBook DescriptionArtificial intelligence and machine learning are the technologies of the future, and this is the perfect time to tap into their potential and add value to your business. Machine Learning for Emotion Analysis in Python helps you employ these cutting-edge technologies in your customer feedback system and in turn grow your business exponentially. With this book, you'll take your foundational data science skills and grow them in the exciting realm of emotion analysis. By following a practical approach, you'll turn customer feedback into meaningful insights assisting you in making smart and data-driven business decisions. The book will help you understand how to preprocess data, build a serviceable dataset, and ensure top-notch data quality. Once you're set up for success, you'll explore complex ML techniques, uncovering the concepts of deep neural networks, support vector machines, conditional probabilities, and more. Finally, you'll acquire practical knowledge using in-depth use cases showing how the experimental results can be transformed into real-life examples and how emotion mining can help track short- and long-term changes in public opinion. By the end of this book, you'll be well-equipped to use emotion mining and analysis to drive business decisions.What you will learnDistinguish between sentiment analysis and emotion analysisMaster data preprocessing and ensure high-quality inputExpand the use of data sources through data transformationDesign models that employ cutting-edge deep learning techniquesDiscover how to tune your models' hyperparametersExplore the use of naive Bayes, SVMs, DNNs, and transformers for advanced use casesPractice your newly acquired skills by working on real-world scenariosWho this book is forThis book is for data scientists and Python developers looking to gain insights into the customer feedback for their product, company, brand, governorship, and more. Basic knowledge of machine learning and Python programming is a must.]]>
Erscheint lt. Verlag 28.9.2023
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-80324-671-5 / 1803246715
ISBN-13 978-1-80324-671-0 / 9781803246710
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
CHF 16,95