Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology -

Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology

Kumar Selvarajoo (Herausgeber)

Buch | Softcover
455 Seiten
2022 | 1st ed. 2023
Springer-Verlag New York Inc.
978-1-0716-2619-1 (ISBN)
CHF 164,75 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
This volume provides protocols for computational, statistical, and machine learning methods that are mainly applied to the study of metabolic engineering, synthetic biology, and disease applications. These techniques support the latest progress in cross-disciplinary research that integrates the different scales of biological complexity. The topics covered in this book are geared toward researchers with a background in engineering, computational analytical, and modeling experience and cover a broad range of topics in computational and machine learning approaches. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.

Comprehensive and practical, Computational Biology and Machine Learning for Metabolic Engineering and Synthetic Biology is a valuable resource for any researcher or scientist who wants to learn more about the latest computational methods and how they are applied toward the understanding and prediction of complex biology. 

Challenges to Ensure a Better Translation of Metabolic Engineering for Industrial Applications.- Synthetic Biology Meets Machine Learning.- Design and Analysis of Massively Parallel Reporter Assays using FORECAST.- Modelling Protein Complexes and Molecular Assemblies using Computational Method.- From Genome Mining to Protein Engineering: A Structural Bioinformatics Route.- Creating De Novo Overlapped Genes.- Design of Gene Boolean Gates and Circuits with Convergent Promoters.- Computational Methods for the Design of Recombinase Logic Circuits with Adaptable Circuit Specifications.- Designing a Model-Driven Approach Towards Rational Experimental Design in Bioprocess Optimization.- Modeling Subcellular Protein Recruitment Dynamics for Synthetic Biology.- Genome-Scale Modeling and Systems Metabolic Engineering of Vibrio Natriegens for the Production of 1,3-Propanediol.- Application of GeneCloudOmics: Transcriptomics Data Analytics for Synthetic Biology.- Overview of Bioinformatics Software and Databases for Metabolic Engineering.- Computational Simulation of Tumor-Induced Angiogenesis.- Computational Methods and Deep Learning for Elucidating Protein Interaction Networks.- Machine Learning Methods for Survival Analysis with Clinical and Transcriptomics Data of Breast Cancer.- Machine Learning Using Neural Networks for Metabolomic Pathway Analyses.- Machine Learning and Hybrid Methods for Metabolic Pathway Modeling.- A Machine Learning Based Approach Using Multi Omics Data to Predict Metabolic Pathways.

Erscheinungsdatum
Reihe/Serie Methods in Molecular Biology
Zusatzinfo 133 Illustrations, color; 27 Illustrations, black and white; XII, 455 p. 160 illus., 133 illus. in color.
Verlagsort New York, NY
Sprache englisch
Maße 178 x 254 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Informatik Weitere Themen Bioinformatik
Naturwissenschaften Biologie Genetik / Molekularbiologie
Schlagworte Genetic Engineering • high-throughput RNA • Proteomics • Recombinase Logic Gate Circuits Design • transcription factors
ISBN-10 1-0716-2619-1 / 1071626191
ISBN-13 978-1-0716-2619-1 / 9781071626191
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Nadine Reinicke

Buch | Softcover (2021)
Urban & Fischer in Elsevier (Verlag)
CHF 22,50