Neuro Symbolic Reasoning and Learning (eBook)
XII, 119 Seiten
Springer Nature Switzerland (Verlag)
978-3-031-39179-8 (ISBN)
This book provides a broad overview of the key results and frameworks for various NSAI tasks as well as discussing important application areas. This book also covers neuro symbolic reasoning frameworks such as LNN, LTN, and NeurASP and learning frameworks. This would include differential inductive logic programming, constraint learning and deep symbolic policy learning. Additionally, application areas such a visual question answering and natural language processing are discussed as well as topics such as verification of neural networks and symbol grounding. Detailed algorithmic descriptions, example logic programs, and an online supplement that includes instructional videos and slides provide thorough but concise coverage of this important area of AI.
Neuro symbolic artificial intelligence (NSAI) encompasses the combination of deep neural networks with symbolic logic for reasoning and learning tasks. NSAI frameworks are now capable of embedding prior knowledge in deep learning architectures, guiding the learning process with logical constraints, providing symbolic explainability, and using gradient-based approaches to learn logical statements. Several approaches are seeing usage in various application areas.
This book is designed for researchers and advanced-level students trying to understand the current landscape of NSAI research as well as those looking to apply NSAI research in areas such as natural language processing and visual question answering. Practitioners who specialize in employing machine learning and AI systems for operational use will find this book useful as well.
Erscheint lt. Verlag | 13.9.2023 |
---|---|
Reihe/Serie | SpringerBriefs in Computer Science | SpringerBriefs in Computer Science |
Zusatzinfo | XII, 119 p. 18 illus., 10 illus. in color. |
Sprache | englisch |
Themenwelt | Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik |
Schlagworte | answer set programming • Artificial Intelligence • Deep learning • Fuzzy Logic • Inductive Logic Programming • Knowledge Representation and Reasoning • Logic Programming • machine learning • Natural Language Processing • Neural networks • Neuro symbolic artificial intelligence • Reinforcement Learning • Symbol grounding • Symbolic artificial intelligence • Visual Question Answering |
ISBN-10 | 3-031-39179-9 / 3031391799 |
ISBN-13 | 978-3-031-39179-8 / 9783031391798 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,7 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich