Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Dynamic Calculus and Equations on Time Scales -

Dynamic Calculus and Equations on Time Scales (eBook)

Svetlin G. Georgiev (Herausgeber)

eBook Download: EPUB
2023
336 Seiten
De Gruyter (Verlag)
978-3-11-118519-4 (ISBN)
Systemvoraussetzungen
174,95 inkl. MwSt
(CHF 169,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The latest advancements in time scale calculus are the focus of this book. New types of time-scale integral transforms are discussed in the book, along with how they can be used to solve dynamic equations. Novel numerical techniques for partial dynamic equations on time scales are described. New time scale inequalities for exponentially convex functions are introduced as well.



Svetlin G. Georgiev

(born 1974, Bulgaria) has worked in various areas of mathematics. His current focus: harmonic analysis, functional analysis, partial di erential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, dynamic calculus on time scales.

1 Projector analysis of dynamic systems on time scales


Svetlin G. Georgiev
Department of Mathematics, Sorbonne University, Paris, France

Abstract

This chapter presents a projector analysis of dynamic systems on time scales. We investigate the linear time-varying dynamic systems and classify them into those of the first, second, third, and fourth kind. The considered systems are investigated in the case when they are regular with tractability index 1. Then, we define jets of a function of one independent time scale variable and jets of a function of n independent real variables and one independent time scale variable. We introduce jet spaces and give some of their properties. In the chapter, we also define differentiable functions and total derivatives. We consider nonlinear dynamic systems on arbitrary time scales. We define properly involved derivatives, constraints, and consistent initial values for the considered equations. We introduce a linearization for nonlinear dynamic systems and investigate the total derivative for regular linearized equations with tractability index 1.

1.1 Linear time-varying dynamic-algebraic equations


This chapter is devoted to linear time-varying dynamic-algebraic equations. We classify them into those of the first, second, third and fourth kind. We investigate them in the case when they are regular with tractability index 1.

Suppose T is a time scale with forward jump operator and delta differentiation operator σ and Δ, respectively. Let I⊆T.

1.1.1 Linear time-varying dynamic-algebraic equations of the first kind


In this section, we will investigate the following linear time-varying dynamic-algebraic equation:

(1.1)Aσ(t)(Bx)Δ(t)=Cσ(t)xσ(t)+f(t),t∈I,

where A:I→Mn×m, B:I→Mm×n, C:I→Mn×n, and f:I→Rn are given. Here, with Mp×q we denote the set of all p×q real matrices.

Definition 1.1.

Equation (1.1) is said to be a linear time-varying dynamic-algebraic equation of the first kind.

We will consider the solutions of (1.1) within the space CB1(I). Below, we remove the explicit dependence on t for the sake of notational simplicity.

1.1.1.1 A particular case

Suppose that A,C:I→Mn×n. Consider the equation

(1.2)AσxΔ=Cσxσ+f.

We will show that equation (1.2) can be reduced to equation (1.1). Suppose that P is a C1-projector along kerAσ. Then

AσP=Aσ

and

AσxΔ=AσPxΔ=Aσ(Px)Δ−AσPΔxσ.

Hence, equation (1.2) takes the form

Aσ(Px)Δ−AσPΔxσ=Cσxσ+f,

or

Aσ(Px)Δ=(AσPΔ+Cσ)xσ+f.

Set

C1σ=AσPΔ+Cσ.

Thus, (1.2) takes the form

(1.3)Aσ(Px)Δ=C1σxσ+f,

i. e., equation (1.2) is a particular case of equation (1.1).

Example.

Let

(1.4)T=2N0,A(t)=1000−t1000,C(t)=−t1t012tt01,t∈T.

We have

σ(t)=2t,t∈T,

and

Aσ(t)=1000−2t1000,Cσ(t)=−2t12t014t2t01,t∈T.

We will find a vector

y(t)=y1(t)y2(t)y3(t),t∈T,

so that

Aσ(t)y(t)=000,t∈T.

We have

000=1000−2t1000y1(t)y2(t)y3(t)=y1(t)−2ty2(t)+y3(t)0,t∈T,

whereupon

y1(t)y2(t)y3(t)=012t,t∈T,

and the null projector to Aσ(t), t∈T, is

Q(t)=000001002t,t∈T.

Hence,

P(t)=I−Q(t)=100010001−000001002t=10001−1001−2t,t∈T,

is a projector along kerAσ. Note that

PΔ(t)=00000000−2,C1σ(t)=Aσ(t)PΔ(t)+Cσ(t)=1000−2t100000000000−2+−2t12t014t2t01=00000−2000+−2t12t014t2t01=−2t12t014t−22t01.

Equation (1.2) can be written as follows:

1000−2t1000x1Δ(t)x2Δ(t)x3Δ(t)=−2t12t014t2t01x1σ(t)x2σ(t)x3σ(t)+f1(t)f2(t)f3(t),t∈T,

or

x1Δ(t)=−2tx1σ(t)+x2σ(t)+2tx3σ(t)+f1(t),−2tx2Δ(t)+x3Δ(t)=x2σ(t)+4tx3σ(t)+f2(t),0=2tx1σ(t)+x3σ(t)+f3(t),t∈T.

This system, using (1.3), can be rewritten in the form

1000−2t100010001−1001−2tx1(t)x2(t)x3(t)Δ=−2t12t014t−22t01x1σ(t)x2σ(t)x3σ(t)+f1(t)f2(t)f3(t),t∈T,

or

1000−2t1000x1(t)x2(t)−x3(t)(1−2t)x3(t)Δ=−2tx1σ(t)+x2σ(t)+2tx3σ(t)+f1(t)x2σ(t)+(4t−2)x3σ(t)+f2(t)2tx1σ(t)+x3σ(t)+f3(t),t∈T,

or

1000−2t1000x1Δ(t)x2Δ(t)−x3Δ(t)(1−4t)x3Δ(t)−2x3(t)=−2tx1σ(t)+x2σ(t)+2tx3σ(t)+f1(t)x2σ(t)+(4t−2)x3σ(t)+f2(t)2tx1σ(t)+x3σ(t)+f3(t),t∈T,

or

x1Δ(t)=−2tx1σ(t)+x2σ(t)+2tx3σ(t)+f1(t),−2t(x2Δ(t)−x3Δ(t))+(1−4t)x3Δ(t)−2x3(t)=x2σ(t)+(4t−2)x3σ(t)+f2(t),0=−2tx1σ(t)+x3σ(t)+f3(t),t∈T,

or

x1Δ(t)=−2tx1σ(t)+x2σ(t)+2tx3σ(t)+f1(t),−2tx2Δ(t)+(1−2t)x3Δ(t)=x2σ(t)+(4t−2)x3σ(t)+2x3(t)+f2(t),0=2tx1σ(t)+x3σ(t)+f3(t),t∈T.

1.1.1.2 Standard form index 1 problems

In this section, we will investigate the equation

(1.5)Aσ(Px)Δ=Cσxσ+f,

where kerA is a C1-space, C∈C(I), P is a C1-projector along kerA. Then

AP=A.

Assume in addition that

Q=I−P

and

(B1)

the matrix

A1=A+CQ

is invertible.

Definition 1.2.

Equation (1.5) is said to be regular with tractability index 1.

We will start our investigations with the following useful lemma.

Lemma 1.1.

Suppose that (B1) holds. Then

A1−1A=P

and

A1−1CQ=Q.
Proof.

We have

A1P=(A+CQ)P=AP+CQP=A.

Since Q=I−P and kerP=kerA, we have imQ=kerA and

AQ=0.

Then

...

Erscheint lt. Verlag 18.9.2023
Zusatzinfo 2 b/w ill., 7 b/w tbl.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Schlagworte Dynamic Equations • dynamic inequalities • Dynamische Gleichungen • Dynamische Ungleichheiten • Dynamische Ungleichungen • Fourier transform • Fourier-Transformation • Integral equations • Integralgleichungen • mumerical methods. • numerische Methoden
ISBN-10 3-11-118519-2 / 3111185192
ISBN-13 978-3-11-118519-4 / 9783111185194
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Wasserzeichen)
Größe: 50,9 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Übungsbuch für Fachhochschulen

von Michael Knorrenschild

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 16,60
Grundlagen - Methoden - Anwendungen

von André Krischke; Helge Röpcke

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
CHF 34,15