Nicht aus der Schweiz? Besuchen Sie lehmanns.de
State Estimation for Robotics - Timothy D. Barfoot

State Estimation for Robotics

Second Edition
Buch | Hardcover
530 Seiten
2024 | 2nd Revised edition
Cambridge University Press (Verlag)
978-1-009-29989-3 (ISBN)
CHF 119,95 inkl. MwSt
This book is intended for students and practitioners of robotics working with noisy sensor data to estimate state variables. New edition highlights include a new chapter on variational inference and new sections on adaptive covariance estimation and on inertial navigation as well as a primer on matrix calculus.
A key aspect of robotics today is estimating the state (e.g., position and orientation) of a robot, based on noisy sensor data. This book targets students and practitioners of robotics by presenting classical state estimation methods (e.g., the Kalman filter) but also important modern topics such as batch estimation, Bayes filter, sigmapoint and particle filters, robust estimation for outlier rejection, and continuous-time trajectory estimation and its connection to Gaussian-process regression. Since most robots operate in a three-dimensional world, common sensor models (e.g., camera, laser rangefinder) are provided followed by practical advice on how to carry out state estimation for rotational state variables. The book covers robotic applications such as point-cloud alignment, pose-graph relaxation, bundle adjustment, and simultaneous localization and mapping. Highlights of this expanded second edition include a new chapter on variational inference, a new section on inertial navigation, more introductory material on probability, and a primer on matrix calculus.

Timothy D. Barfoot is a Professor at the University of Toronto Institute for Aerospace Studies. He has been conducting research in the area of navigation of mobile robotics for over 20 years, both in industry and academia, for applications including space exploration, mining, military, and transportation. He is a Fellow of the IEEE Robotics and Automation Society.

Acronyms and abbreviations; Notation; Foreword to first edition; Foreword to second edition; 1. Introduction; Part I. Estimation Machinery: 2. Primer on probability theory; 3. Linear-Gaussian estimation; 4. Nonlinear non-Gaussian estimation; 5. Handling nonidealities in estimation; 6. Variational inference; Part II. Three-Dimensional Machinery: 7. Primer on three-dimensional geometry; 8. Matrix lie groups; Part III. Applications: 9. Pose estimation problems; 10. Pose-and-point estimation problems; 11. Continuous-time estimation; Appendix A: matrix primer; Appendix B: rotation and pose extras; Appendix C: miscellaneous extras; Appendix D: solutions to exercises; References; Index.

Erscheinungsdatum
Zusatzinfo Worked examples or Exercises
Verlagsort Cambridge
Sprache englisch
Gewicht 1239 g
Themenwelt Informatik Grafik / Design Digitale Bildverarbeitung
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
ISBN-10 1-009-29989-1 / 1009299891
ISBN-13 978-1-009-29989-3 / 9781009299893
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
alles zum Drucken, Scannen, Modellieren

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2024)
Markt + Technik Verlag
CHF 34,90
Einstieg und Praxis

von Werner Sommer; Andreas Schlenker

Buch | Softcover (2023)
Markt + Technik (Verlag)
CHF 27,90