Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Machine Learning for Business Analytics (eBook)

Concepts, Techniques, and Applications in R
eBook Download: EPUB
2023 | 2. Auflage
688 Seiten
John Wiley & Sons (Verlag)
978-1-119-83519-6 (ISBN)

Lese- und Medienproben

Machine Learning for Business Analytics - Galit Shmueli, Peter C. Bruce, Peter Gedeck, Inbal Yahav, Nitin R. Patel
Systemvoraussetzungen
107,99 inkl. MwSt
(CHF 105,50)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
MACHINE LEARNING FOR BUSINESS ANALYTICS

Machine learning --also known as data mining or data analytics-- is a fundamental part of data science. It is used by organizations in a wide variety of arenas to turn raw data into actionable information.

Machine Learning for Business Analytics: Concepts, Techniques, and Applications in R provides a comprehensive introduction and an overview of this methodology. This best-selling textbook covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, rule mining, recommendations, clustering, text mining, experimentation, and network analytics. Along with hands-on exercises and real-life case studies, it also discusses managerial and ethical issues for responsible use of machine learning techniques.

This is the second R edition of Machine Learning for Business Analytics. This edition also includes:

* A new co-author, Peter Gedeck, who brings over 20 years of experience in machine learning using R

* An expanded chapter focused on discussion of deep learning techniques

* A new chapter on experimental feedback techniques including A/B testing, uplift modeling, and reinforcement learning

* A new chapter on responsible data science

* Updates and new material based on feedback from instructors teaching MBA, Masters in Business Analytics and related programs, undergraduate, diploma and executive courses, and from their students

* A full chapter devoted to relevant case studies with more than a dozen cases demonstrating applications for the machine learning techniques

* End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented

* A companion website with more than two dozen data sets, and instructor materials including exercise solutions, slides, and case solutions

This textbook is an ideal resource for upper-level undergraduate and graduate level courses in data science, predictive analytics, and business analytics. It is also an excellent reference for analysts, researchers, and data science practitioners working with quantitative data in management, finance, marketing, operations management, information systems, computer science, and information technology.

Galit Shmueli, PhD, is Distinguished Professor and Institute Director at National Tsing Hua University's Institute of Service Science. She has designed and instructed business analytics courses since 2004 at University of Maryland, Statistics.com, The Indian School of Business, and National Tsing Hua University, Taiwan. Peter C. Bruce, is Founder of the Institute for Statistics Education at Statistics.com, and Chief Learning Officer at Elder Research, Inc. Peter Gedeck, PhD, is Senior Data Scientist at Collaborative Drug Discovery and teaches at statistics.com and the UVA School of Data Science. His specialty is the development of machine learning algorithms to predict biological and physicochemical properties of drug candidates. Inbal Yahav, PhD, is a Senior Lecturer in The Coller School of Management at Tel Aviv University, Israel. Her work focuses on the development and adaptation of statistical models for use by researchers in the field of information systems. Nitin R. Patel, PhD, is Co-founder and Lead Researcher at Cytel Inc. He was also a Co-founder of Tata Consultancy Services. A Fellow of the American Statistical Association, Dr. Patel has served as a Visiting Professor at the Massachusetts Institute of Technology and at Harvard University, USA.

Erscheint lt. Verlag 23.3.2023
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Business & Management • Business Analytics • Data Mining • Data Mining Statistics • Decision Sciences • Electrical & Electronics Engineering • Elektrotechnik u. Elektronik • Maschinelles Lernen • Neural networks • Neuronale Netze • Statistics • Statistik • Theorie der Entscheidungsfindung • Wirtschaft u. Management
ISBN-10 1-119-83519-4 / 1119835194
ISBN-13 978-1-119-83519-6 / 9781119835196
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 18,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich