Learning with the Minimum Description Length Principle
Springer Verlag, Singapore
978-981-99-1789-1 (ISBN)
Written in a systematic, concise and comprehensive style, this book is suitable for researchers and graduate students of machine learning, statistics, information theory and computer science.
Kenji Yamanishi is a Professor at the Graduate School of Information Science and Technology, University of Tokyo, Japan. After completing the master course at the Graduate School of University of Tokyo, he joined NEC Corporation in 1987. He received his doctorate (in Engineering) from the University of Tokyo in 1992 and joined the University faculty in 2009. His research interests and contributions are in the theory of the minimum description length principle, information-theoretic learning theory, and data science applications such as anomaly detection and text mining.
Information and Coding.- Parameter Estimation.- Model Selection.- Latent Variable Model Selection.- Sequential Prediction.- MDL Change Detection.- Continuous Model Selection.- Extension of Stochastic Complexity.- Mathematical Preliminaries.
Erscheinungsdatum | 17.09.2023 |
---|---|
Zusatzinfo | 48 Illustrations, color; 3 Illustrations, black and white; XX, 339 p. 51 illus., 48 illus. in color. |
Verlagsort | Singapore |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Anomaly Detection • Change detection • Data Science • Information Theory • machine learning • MDL • Minimum Description Length Principle • Model Selection • Prediction • Statistical Inferrence |
ISBN-10 | 981-99-1789-1 / 9819917891 |
ISBN-13 | 978-981-99-1789-1 / 9789819917891 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich