Nicht aus der Schweiz? Besuchen Sie lehmanns.de
A First Course in Statistical Learning - Johannes Lederer

A First Course in Statistical Learning

With Data Examples and Python Code
Buch | Hardcover
XIV, 282 Seiten
2025
Springer International Publishing (Verlag)
978-3-031-30275-6 (ISBN)
CHF 134,80 inkl. MwSt
  • Noch nicht erschienen - erscheint am 11.01.2025
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

This textbook introduces the fundamental concepts and methods of statistical learning. It uses Python and provides a unique approach by blending theory, data examples, software code, and exercises from beginning to end for a profound yet practical introduction to statistical learning.

The book consists of three parts: The first one presents data in the framework of probability theory, exploratory data analysis, and unsupervised learning. The second part on inferential data analysis covers linear and logistic regression and regularization. The last part studies machine learning with a focus on support-vector machines and deep learning. Each chapter is based on a dataset, which can be downloaded from the book's homepage.

In addition, the book has the following features:

  • A careful selection of topics ensures rapid progress.
  • An opening question at the beginning of each chapter leads the reader through the topic.
  • Expositions are rigorous yet based on elementary mathematics.
  • More than two hundred exercises help digest the material.
  • A crisp discussion section at the end of each chapter summarizes the key concepts and highlights practical implications.
  • Numerous suggestions for further reading guide the reader in finding additional information.

This book is for everyone who wants to understand and apply concepts and methods of statistical learning. Typical readers are graduate and advanced undergraduate students in data-intensive fields such as computer science, biology, psychology, business, and engineering, and graduates preparing for their job interviews.

 

lt;p>Johannes Lederer is a Professor of Statistics at the Ruhr-University Bochum, Germany. He received his PhD in mathematics from the ETH Zürich and subsequently held positions at UC Berkeley, Cornell University, and the University of Washington. He has taught statistical learning and related courses in the US, Belgium, Hong Kong, and Germany to applied and mathematical audiences alike.

Part I: Data.- Chapter 1: Fundamentals of Data.- Chapter 2: Exploratory Data Analysis.- Chapter 3: Unsupervised Learning.- Part II: Inferential Data Analyses.- Chapter 4: Linear Regression.- Chapter 5: Logistic Regression.- Chapter 6: Regularization.- Part III: Machine Learning.- Chapter 7: Support-Vector Machines.- Chapter 8: Deep Learning.

Erscheint lt. Verlag 11.1.2025
Reihe/Serie Statistics and Computing
Zusatzinfo XIV, 282 p. 727 illus., 714 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Data Science • Deep learning • Exploratory data analysis • Introduction to Statistical Learning • linear regression • Logistic Regression • machine learning • Python • python code • Regularization • Statistical Learning • statistical machine learning • Support Vector Machines • Unsupervised Learning
ISBN-10 3-031-30275-3 / 3031302753
ISBN-13 978-3-031-30275-6 / 9783031302756
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Weg zur Datenanalyse

von Ludwig Fahrmeir; Christian Heumann; Rita Künstler …

Buch | Softcover (2024)
Springer Spektrum (Verlag)
CHF 69,95
Eine Einführung für Wirtschafts- und Sozialwissenschaftler

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
CHF 41,90