Nonlocal Continuum Limits of p-Laplacian Problems on Graphs
Seiten
2023
Cambridge University Press (Verlag)
978-1-009-32785-5 (ISBN)
Cambridge University Press (Verlag)
978-1-009-32785-5 (ISBN)
Considers fully discretized p-Laplacian problems on graphs. The motivation of nonlocal continuum limits comes from the quest of understanding collective dynamics in large ensembles of interacting particles, which is a fundamental problem in nonlinear science, with applications ranging from biology to physics, chemistry and computer science.
In this Element, the authors consider fully discretized p-Laplacian problems (evolution, boundary value and variational problems) on graphs. The motivation of nonlocal continuum limits comes from the quest of understanding collective dynamics in large ensembles of interacting particles, which is a fundamental problem in nonlinear science, with applications ranging from biology to physics, chemistry and computer science. Using the theory of graphons, the authors give a unified treatment of all the above problems and establish the continuum limit for each of them together with non-asymptotic convergence rates. They also describe an algorithmic framework based proximal splitting to solve these discrete problems on graphs.
In this Element, the authors consider fully discretized p-Laplacian problems (evolution, boundary value and variational problems) on graphs. The motivation of nonlocal continuum limits comes from the quest of understanding collective dynamics in large ensembles of interacting particles, which is a fundamental problem in nonlinear science, with applications ranging from biology to physics, chemistry and computer science. Using the theory of graphons, the authors give a unified treatment of all the above problems and establish the continuum limit for each of them together with non-asymptotic convergence rates. They also describe an algorithmic framework based proximal splitting to solve these discrete problems on graphs.
1. Introduction; 2. Mathematical Background; 3. Nonlocal p-Laplacian evolution problem on graphs; 4. Nonlocal p-Laplacian variational problem on graphs; 5. Nonlocal p-Laplacian Dirichlet problem on graphs; 6. Algorithmic framework based on proximal splitting; References.
Erscheinungsdatum | 02.05.2023 |
---|---|
Reihe/Serie | Elements in Non-local Data Interactions: Foundations and Applications |
Zusatzinfo | Worked examples or Exercises |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 91 g |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
ISBN-10 | 1-009-32785-2 / 1009327852 |
ISBN-13 | 978-1-009-32785-5 / 9781009327855 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
was jeder über Informatik wissen sollte
Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Grundlagen – Anwendungen – Perspektiven
Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Eine Einführung in die Systemtheorie
Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95