Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Sensor-Based Sleep Stage Classification Using Deep Learning

(Autor)

Buch | Softcover
167 Seiten
2023
Logos Berlin (Verlag)
978-3-8325-5617-4 (ISBN)

Lese- und Medienproben

Sensor-Based Sleep Stage Classification Using Deep Learning - Xinyu Huang
CHF 71,95 inkl. MwSt
Sleep is a cyclic physiological phenomenon, an important aspect of human life activity, which, like sport and diet, is a nutritional element that ensures the growth and development of the organism. Under the influence of various factors such as work and study stress and metabolic disorders, more and more people suffer from various types of sleep disorders. Sleep has become an important research topic in recent years. Sleep stage analysis plays an important role in the early detection and treatment of sleep disorders. However, different age groups show different symptoms of sleep disorders, and different sleep disorders show variability in their different sleep stages. The prevalence of sleep disorders is much higher in children than in adults. Although the classification of sleep stages in adults has been well studied, children show markedly different characteristics of sleep stages. Therefore, there is an urgent need for sleep stage classification in children. With the rapid development of intelligent computing technology, artificial intelligence has found wide application in medical research and health sciences in recent years.

In the field of sleep medicine, deep learning approaches can efficiently and automatically learn abstracted relevant sleep features from collected sleep data to accurately interpret children's sleep stages accordingly. Compared to traditional sleep data analysis, this saves many manual and time resources for data annotation and helps sleep experts reduce the risk of misdiagnosing sleep disorders based on their prior knowledge. In this context, this book presents several advanced deep learning-based approaches for sleep stage classification in children using time series polysomnography recordings acquired from clinical sensor devices. Significantly improved performance in classifying sleep stages in children suffering from sleep disorders demonstrates the great potential of joint research and development between artificial intelligence and the field of sleep medicine.
Erscheinungsdatum
Reihe/Serie Human Data Understanding - Sensors, Models, Knowledge ; 4
Sprache englisch
Maße 170 x 240 mm
Einbandart Paperback
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Artificial Intelligence • Deep learning • Medical data science • Sleep stage classification • Time-series analysis
ISBN-10 3-8325-5617-6 / 3832556176
ISBN-13 978-3-8325-5617-4 / 9783832556174
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95