Geometric Harmonic Analysis IV
Springer International Publishing (Verlag)
978-3-031-29178-4 (ISBN)
Traditionally, the label "Calderón-Zygmund theory" has been applied to a distinguished body of works primarily pertaining to the mapping properties of singular integral operators on Lebesgue spaces, in various geometric settings. Volume IV amounts to a versatile Calderón-Zygmund theory for singular integral operators of layer potential type in open sets with uniformly rectifiable boundaries, considered on a diverse range of function spaces. Novel applications to complex analysis in several variables are also explored here.
Introduction and Statement of Main Results Concerning the Divergence Theorem.- Examples, Counterexamples, and Additional Perspectives.- Tools from Geometric Measure Theory, Harmonic Analysis, and functional Analysis.- Open Sets with Locally Finite Surface Measures and Boundary Behavior.- Proofs of the Main Results Pertaining to the Divergence Theorem.- Applications to Singular Integrals, Function Spaces, Boundary Problems, and Further Results.
Erscheinungsdatum | 11.07.2023 |
---|---|
Reihe/Serie | Developments in Mathematics |
Zusatzinfo | XIX, 992 p. 1 illus. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 1676 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Schlagworte | boundary value problems • Divergence Theorem • function spaces • integral representation formulas in complex analysis • Integration by parts • singular integral operators • Stokes Theorem |
ISBN-10 | 3-031-29178-6 / 3031291786 |
ISBN-13 | 978-3-031-29178-4 / 9783031291784 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich