Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Machine Learning Algorithms Using Scikit and TensorFlow Environments -

Machine Learning Algorithms Using Scikit and TensorFlow Environments

Buch | Hardcover
453 Seiten
2023
IGI Global (Verlag)
978-1-6684-8531-6 (ISBN)
CHF 459,95 inkl. MwSt
  • Lieferbar
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken
Assists researchers in learning and implementing these critical algorithms. Key topics covered include classification, artificial neural networks, prediction, random forest, and regression analysis.
Machine learning is able to solve real-time problems. It has several algorithms such as classification, clustering, and more. To learn these essential algorithms, we require tools like Scikit and TensorFlow.

Machine Learning Algorithms Using Scikit and TensorFlow Environments assists researchers in learning and implementing these critical algorithms. Covering key topics such as classification, artificial neural networks, prediction, random forest, and regression analysis, this premier reference source is ideal for industry professionals, computer scientists, researchers, academicians, scholars, practitioners, instructors, and students.

Puvvadi Baby Maruthi received Master of Computer Applications degree from JNTU Ananthapur in 2010, and the Ph.D degree from Sri Padmavati Mahila VisvaVidyalayam, Tirupati, in 2019. She is currently working as an Assistant Professor in Sri Venkateswara College of Engineering, Tirupati. She got gold medal in R programming in NPTEL. Her research interests include soft computing, information security, digital image processing and Machine Learning. Amit Kumar Tyagi is Assistant Professor (Senior Grade), and Senior Researcher at Vellore Institute of Technology (VIT), Chennai Campus, India. He received his Ph.D. Degree in 2018 from Pondicherry Central University, India. He joined the Lord Krishna College of Engineering, Ghaziabad (LKCE) for the periods of 2009-2010, and 2012-2013.

Erscheinungsdatum
Verlagsort Hershey
Sprache englisch
Maße 216 x 279 mm
Gewicht 272 g
Themenwelt Mathematik / Informatik Informatik Software Entwicklung
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
ISBN-10 1-6684-8531-1 / 1668485311
ISBN-13 978-1-6684-8531-6 / 9781668485316
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich