Maximal Subellipticity
The series is devoted to the publication of monographs and high-level textbooks in mathematics, mathematical methods, and their applications. Apart from covering important areas of current interest, a major aim is to make topics of an interdisciplinary nature accessible to the non-specialist.
Maximally subelliptic partial differential equations (PDEs) are a far-reaching generalization of elliptic PDEs. Elliptic PDEs hold a special place: sharp results are known for general linear and even fully nonlinear elliptic PDEs. Over the past half-century, important results for elliptic PDEs have been generalized to maximally subelliptic PDEs. This text presents this theory and generalizes the sharp, interior regularity theory for general linear and fully nonlinear elliptic PDEs to the maximally subelliptic setting.
Brian Street, University of Wisconsin, USA
Erscheinungsdatum | 09.06.2023 |
---|---|
Reihe/Serie | De Gruyter Studies in Mathematics ; 93 |
Zusatzinfo | 1 b/w ill. |
Verlagsort | Berlin/Boston |
Sprache | englisch |
Maße | 170 x 240 mm |
Gewicht | 1353 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Schlagworte | degenerate elliptic • fully nonlinear • hypoelliptic • subelliptic • subelliptic, hypoelliptic, degenerate elliptic, sub-Riemannian, fully nonlinear • subelliptisch • Sub-Elliptisch • sub-riemann • sub-Riemannian • Sub-Rimannsche • Vollständig Nicht-linear • volstandig nichtlinear |
ISBN-10 | 3-11-108517-1 / 3111085171 |
ISBN-13 | 978-3-11-108517-3 / 9783111085173 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich