Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Applied Geospatial Data Science with Python - David S. Jordan

Applied Geospatial Data Science with Python (eBook)

Leverage geospatial data analysis and modeling to find unique solutions to environmental problems

(Autor)

eBook Download: EPUB
2023
308 Seiten
Packt Publishing (Verlag)
978-1-80324-034-3 (ISBN)
Systemvoraussetzungen
39,59 inkl. MwSt
(CHF 38,65)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Data scientists, when presented with a myriad of data, can often lose sight of how to present geospatial analyses in a meaningful way so that it makes sense to everyone. Using Python to visualize data helps stakeholders in less technical roles to understand the problem and seek solutions. The goal of this book is to help data scientists and GIS professionals learn and implement geospatial data science workflows using Python.
Throughout this book, you'll uncover numerous geospatial Python libraries with which you can develop end-to-end spatial data science workflows. You'll learn how to read, process, and manipulate spatial data effectively. With data in hand, you'll move on to crafting spatial data visualizations to better understand and tell the story of your data through static and dynamic mapping applications. As you progress through the book, you'll find yourself developing geospatial AI and ML models focused on clustering, regression, and optimization. The use cases can be leveraged as building blocks for more advanced work in a variety of industries.
By the end of the book, you'll be able to tackle random data, find meaningful correlations, and make geospatial data models.


Intelligently connect data points and gain a deeper understanding of environmental problems through hands-on Geospatial Data Science case studies written in PythonThe book includes colored images of important conceptsKey FeaturesLearn how to integrate spatial data and spatial thinking into traditional data science workflowsDevelop a spatial perspective and learn to avoid common pitfalls along the wayGain expertise through practical case studies applicable in a variety of industries with code samples that can be reproduced and expandedBook DescriptionData scientists, when presented with a myriad of data, can often lose sight of how to present geospatial analyses in a meaningful way so that it makes sense to everyone. Using Python to visualize data helps stakeholders in less technical roles to understand the problem and seek solutions. The goal of this book is to help data scientists and GIS professionals learn and implement geospatial data science workflows using Python. Throughout this book, you ll uncover numerous geospatial Python libraries with which you can develop end-to-end spatial data science workflows. You ll learn how to read, process, and manipulate spatial data effectively. With data in hand, you ll move on to crafting spatial data visualizations to better understand and tell the story of your data through static and dynamic mapping applications. As you progress through the book, you ll find yourself developing geospatial AI and ML models focused on clustering, regression, and optimization. The use cases can be leveraged as building blocks for more advanced work in a variety of industries. By the end of the book, you ll be able to tackle random data, find meaningful correlations, and make geospatial data models.What you will learnUnderstand the fundamentals needed to work with geospatial dataTransition from tabular to geo-enabled data in your workflowsDevelop an introductory portfolio of spatial data science work using PythonGain hands-on skills with case studies relevant to different industriesDiscover best practices focusing on geospatial data to bring a positive change in your environmentExplore solving use cases, such as traveling salesperson and vehicle routing problemsWho this book is forThis book is for you if you are a data scientist seeking to incorporate geospatial thinking into your workflows or a GIS professional seeking to incorporate data science methods into yours. You ll need to have a foundational knowledge of Python for data analysis and/or data science.]]>
Erscheint lt. Verlag 28.2.2023
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
ISBN-10 1-80324-034-2 / 1803240342
ISBN-13 978-1-80324-034-3 / 9781803240343
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35
Konzepte, Methoden, Lösungen und Arbeitshilfen für die Praxis

von Ernst Tiemeyer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
CHF 68,35