Azure Machine Learning Engineering (eBook)
362 Seiten
Packt Publishing (Verlag)
978-1-80324-168-5 (ISBN)
Data scientists working on productionizing machine learning (ML) workloads face a breadth of challenges at every step owing to the countless factors involved in getting ML models deployed and running. This book offers solutions to common issues, detailed explanations of essential concepts, and step-by-step instructions to productionize ML workloads using the Azure Machine Learning service. You'll see how data scientists and ML engineers working with Microsoft Azure can train and deploy ML models at scale by putting their knowledge to work with this practical guide.
Throughout the book, you'll learn how to train, register, and productionize ML models by making use of the power of the Azure Machine Learning service. You'll get to grips with scoring models in real time and batch, explaining models to earn business trust, mitigating model bias, and developing solutions using an MLOps framework.
By the end of this Azure Machine Learning book, you'll be ready to build and deploy end-to-end ML solutions into a production system using the Azure Machine Learning service for real-time scenarios.
Fully build and productionize end-to-end machine learning solutions using Azure Machine Learning ServiceKey FeaturesAutomate complete machine learning solutions using Microsoft AzureUnderstand how to productionize machine learning modelsGet to grips with monitoring, MLOps, deep learning, distributed training, and reinforcement learningBook DescriptionData scientists working on productionizing machine learning (ML) workloads face a breadth of challenges at every step owing to the countless factors involved in getting ML models deployed and running. This book offers solutions to common issues, detailed explanations of essential concepts, and step-by-step instructions to productionize ML workloads using the Azure Machine Learning service. You'll see how data scientists and ML engineers working with Microsoft Azure can train and deploy ML models at scale by putting their knowledge to work with this practical guide.Throughout the book, you'll learn how to train, register, and productionize ML models by making use of the power of the Azure Machine Learning service. You'll get to grips with scoring models in real time and batch, explaining models to earn business trust, mitigating model bias, and developing solutions using an MLOps framework.By the end of this Azure Machine Learning book, you'll be ready to build and deploy end-to-end ML solutions into a production system using the Azure Machine Learning service for real-time scenarios.What you will learnTrain ML models in the Azure Machine Learning serviceBuild end-to-end ML pipelinesHost ML models on real-time scoring endpointsMitigate bias in ML modelsGet the hang of using an MLOps framework to productionize modelsSimplify ML model explainability using the Azure Machine Learning service and Azure InterpretWho this book is forMachine learning engineers and data scientists who want to move to ML engineering roles will find this AMLS book useful. Familiarity with the Azure ecosystem will assist with understanding the concepts covered.
Erscheint lt. Verlag | 20.1.2023 |
---|---|
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Web / Internet | |
ISBN-10 | 1-80324-168-3 / 1803241683 |
ISBN-13 | 978-1-80324-168-5 / 9781803241685 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopierschutz. Eine Weitergabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persönlichen Nutzung erwerben.
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür die kostenlose Software Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür eine kostenlose App.
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich