Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Big Data Analytics in Fog-Enabled IoT Networks -

Big Data Analytics in Fog-Enabled IoT Networks

Towards a Privacy and Security Perspective
Buch | Softcover
216 Seiten
2024
CRC Press (Verlag)
978-1-032-20645-5 (ISBN)
CHF 78,50 inkl. MwSt
This book emphasizes and facilitate a greater understanding of various security and privacy approaches using the advance AI and Big data technologies like machine/deep learning, federated learning, blockchain, edge computing and the countermeasures to overcome the vulnerabilities of the Fog-enabled IoT system.
The integration of fog computing with the resource-limited Internet of Things (IoT) network formulates the concept of the fog-enabled IoT system. Due to a large number of IoT devices, the IoT is a main source of Big Data. A large volume of sensing data is generated by IoT systems such as smart cities and smart-grid applications. A fundamental research issue is how to provide a fast and efficient data analytics solution for fog-enabled IoT systems. Big Data Analytics in Fog-Enabled IoT Networks: Towards a Privacy and Security Perspective focuses on Big Data analytics in a fog-enabled-IoT system and provides a comprehensive collection of chapters that touch on different issues related to healthcare systems, cyber-threat detection, malware detection, and the security and privacy of IoT Big Data and IoT networks.

This book also emphasizes and facilitates a greater understanding of various security and privacy approaches using advanced artificial intelligence and Big Data technologies such as machine and deep learning, federated learning, blockchain, and edge computing, as well as the countermeasures to overcome the vulnerabilities of the fog-enabled IoT system.

1. Deep Learning Techniques in Big Data-Enabled Internet-of-Things Devices. 2. IoMT based Smart Health Monitoring: The Future of HealthCare. 3. A Review on Intrusion Detection Systems and Cyber Threat Intelligence for Secure IoT-Enabled Network: Challenges and Directions. 4. Self-Adaptive Application Monitoring for Decentralized Edge Frameworks. 5. Federated Learning and Its Application in Malware Detection. 6. An Ensemble XGBoost Approach for the Detection of Cyber-Attacks in the Industrial IOT Domain. 7. A Review on IoT for the Application of Energy, Environment, and Waste Management: System Architecture and Future Directions. 8. Analysis of Feature Selection Methods for Android Malware Detection Using Machine Learning Techniques. 9. An Efficient Optimizing Energy Consumption Using Modified Bee Colony Optimization in Fog and IoT Networks.

Erscheinungsdatum
Zusatzinfo 45 Tables, black and white; 40 Line drawings, black and white; 4 Halftones, black and white; 44 Illustrations, black and white
Verlagsort London
Sprache englisch
Maße 156 x 234 mm
Gewicht 426 g
Themenwelt Informatik Netzwerke Sicherheit / Firewall
Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Informatik Web / Internet
Informatik Weitere Themen Hardware
ISBN-10 1-032-20645-4 / 1032206454
ISBN-13 978-1-032-20645-5 / 9781032206455
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Das Lehrbuch für Konzepte, Prinzipien, Mechanismen, Architekturen und …

von Norbert Pohlmann

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95
Management der Informationssicherheit und Vorbereitung auf die …

von Michael Brenner; Nils gentschen Felde; Wolfgang Hommel

Buch (2024)
Carl Hanser (Verlag)
CHF 97,95

von Chaos Computer Club

Buch | Softcover (2024)
KATAPULT Verlag
CHF 39,20