Head and Neck Tumor Segmentation and Outcome Prediction
Springer International Publishing (Verlag)
978-3-031-27419-0 (ISBN)
The 22 contributions presented, as well as an overview paper, were carefully reviewed and selected from 24 submissions. This challenge aims to evaluate and compare the current state-of-the-art methods for automatic head and neck tumor segmentation. In the context of this challenge, a dataset of 883 delineated PET/CT images was made available for training.
Overview of the HECKTOR Challenge at MICCAI 2022: Automatic Head and Neck Tumor Segmentation and Outcome Prediction in PET/CT 1.- Automated head and neck tumor segmentation from 3D PET/CTHECKTOR 2022 challenge report.- A Coarse-to-Fine Ensembling Framework for Head and Neck Tumorand Lymph Segmentation in CT and PET Images.- A General Web-based Platform for Automatic Delineation of Head and Neck Gross Tumor Volumes in PET/CT Images.- Octree Boundary Transfiner: Effcient Transformers for Tumor Segmentation Refinement.- Head and Neck Primary Tumor and Lymph Node Auto-Segmentationfor PET/CT Scans.- Fusion-based Automated Segmentation in Head and Neck Cancer via Advance Deep Learning Techniques.- Stacking Feature Maps of Multi-Scaled Medical Images in U-Net for 3DHead and Neck Tumor Segmentation.- A fine-tuned 3D U-net for primary tumor and affected lymph nodessegmentationin fused multimodal images of oropharyngeal cancer.- A U-Net convolutional neural network with multiclass Dice loss for automated segmentation of tumors and lymph nodes from head and neck cancer PET/CT images.- Multi-Scale Fusion Methodologies for Head and Neck Tumor Segmentation.- Swin UNETR for tumor and lymph node delineation of multicentre oropharyngeal cancer patients with PET/CT imaging.- Simplicity is All You Need: Out-of-the-Box nnUNet followed by Binary-Weighted Radiomic Model for Segmentation and Outcome Prediction in Head and Neck PET/CT.- Radiomics-enhanced Deep Multi-task Learning for Outcome Prediction in Head and Neck Cancer.- Recurrence-free Survival Prediction under the Guidance of Automatic Gross Tumor Volume Segmentation for Head and Neck Cancers.- Joint nnU-Net and Radiomics Approaches for Segmentation and Prognosis of Head and Neck Cancers with PET/CT images.- LC at HECKTOR 2022: The Effect and Importance of Training Data when Analyzing Cases of Head and Neck Tumors using Machine Learning.- Towards Tumour Graph Learning for Survival Prediction in Head NeckCancer Patients.- Combining nnUNet and AutoML for Automatic Head and Neck Tumor Segmentation and Recurrence-Free Survival Prediction in PET/CT Images.- Head and neck cancer localization with Retina Unet for automated segmentation and time-to-event prognosis from PET/CT images.- HNT-AI: An Automatic Segmentation Framework for Head and Neck Primary Tumors and Lymph Nodes in FDG-PET/CT images.- Head and Neck Tumor Segmentation with 3D UNet and Survival Prediction with Multiple Instance Neural Network.- Deep Learning and Machine Learning Techniques for Automated PET/CT Segmentation and Survival Prediction in Head and Neck Cancer.- Deep learning and radiomics based PET/CT image feature extractionfrom auto segmented tumor volumes for recurrence-free survival prediction in oropharyngeal cancer patients.
Erscheinungsdatum | 22.03.2023 |
---|---|
Reihe/Serie | Lecture Notes in Computer Science |
Zusatzinfo | XI, 257 p. 75 illus., 67 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 419 g |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Artificial Intelligence • automatic segmentations • classification • computerized tomography • computer vision • Deep learning • Education • head and neck cancer • Health Informatics • Image Analysis • Image Processing • Image Segmentation • machine learning • Medical Images • Medical Imaging • Neural networks • pattern recognition • performance, design, evaluation • Radiomics • segmentation methods |
ISBN-10 | 3-031-27419-9 / 3031274199 |
ISBN-13 | 978-3-031-27419-0 / 9783031274190 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich