Applied Multivariate Statistics with R (eBook)
XIX, 463 Seiten
Springer International Publishing (Verlag)
978-3-031-13005-2 (ISBN)
Now in its second edition, this book brings multivariate statistics to graduate-level practitioners, making these analytical methods accessible without lengthy mathematical derivations. Using the open source shareware program R, Dr. Zelterman demonstrates the process and outcomes for a wide array of multivariate statistical applications. Chapters cover graphical displays; linear algebra; univariate, bivariate and multivariate normal distributions; factor methods; linear regression; discrimination and classification; clustering; time series models; and additional methods. He uses practical examples from diverse disciplines, to welcome readers from a variety of academic specialties. Each chapter includes exercises, real data sets, and R implementations. The book avoids theoretical derivations beyond those needed to fully appreciate the methods. Prior experience with R is not necessary.
New to this edition are chapters devoted to longitudinal studies and the clustering of large data. It is an excellent resource for students of multivariate statistics, as well as practitioners in the health and life sciences who are looking to integrate statistics into their work.
Daniel Zelterman is professor in the department of biostatistics at Yale University. His research areas include computational statistics, models for discrete valued data, and the design of clinical trials in cancer studies. In his spare time he plays oboe and bassoon in amateur orchestral groups and has backpacked hundreds of miles of the Appalachian Trail.
Erscheint lt. Verlag | 20.1.2023 |
---|---|
Reihe/Serie | Statistics for Biology and Health | Statistics for Biology and Health |
Zusatzinfo | XIX, 463 p. 172 illus., 158 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Naturwissenschaften ► Biologie | |
Schlagworte | Clustering • factor methods • graphical displays • linear algebra • linear regression • Longitudinal Studies • matrix algebra biostatistics • Normal distribution • R software • Statistical Inference for Biology • time series models |
ISBN-10 | 3-031-13005-7 / 3031130057 |
ISBN-13 | 978-3-031-13005-2 / 9783031130052 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 7,9 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich