Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Artificial Intelligence for Scientific Discoveries - Raban Iten

Artificial Intelligence for Scientific Discoveries

Extracting Physical Concepts from Experimental Data Using Deep Learning

(Autor)

Buch | Hardcover
XIII, 170 Seiten
2023 | 2023
Springer International Publishing (Verlag)
978-3-031-27018-5 (ISBN)
CHF 194,70 inkl. MwSt
This book explains the modern approach to discovering physical concepts with machine learning and elucidates its strengths and limitations. SciNet finds the relevant physical parameters, such as the mass of a particle, from experimental data and makes predictions based on the parameters found.

Will research soon be done by artificial intelligence, thereby making human researchers superfluous? This book explains modern approaches to discovering physical concepts with machine learning and elucidates their strengths and limitations. The automation of the creation of experimental setups and physical models, as well as model testing are discussed. The focus of the book is the automation of an important step of the model creation, namely finding a minimal number of natural parameters that contain sufficient information to make predictions about the considered system. The basic idea of this approach is to employ a deep learning architecture, SciNet, to model a simplified version of a physicist's reasoning process. SciNet finds the relevant physical parameters, like the mass of a particle, from experimental data and makes predictions based on the parameters found. The author demonstrates how to extract conceptual information from such parameters, e.g., Copernicus' conclusion that the solar system is heliocentric. 

 

Raban Iten studied Physics and Mathematics at ETH Zürich, followed by a Ph.D. in quantum computation. During his Ph.D., he worked on using machine learning to discover physical concepts from experimental data of classical and quantum systems. Furthermore, he developed algorithms for quantum compilers and contributed to various open-source libraries for quantum computing.  

Introduction.- Machine Learning Background.- Overview of Using Machine Learning for Physical Discoveries.- Theory: Formalizing the Process of Human Model Building.- Methods: Using Neural Networks to Find Simple Representations.- Applications: Physical Toy Examples.- Open Questions and Future Prospects.

Erscheinungsdatum
Zusatzinfo XIII, 170 p. 38 illus., 37 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 439 g
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte AI-Scientist • Artificial Intelligence • Automation of Physics • Deep learning • Discovering Physical Laws • Extracting Equations from Data • Heliocentric Solar System • machine learning • Neural networks • representation learning
ISBN-10 3-031-27018-5 / 3031270185
ISBN-13 978-3-031-27018-5 / 9783031270185
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
CHF 41,95
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
CHF 46,15