Nicht aus der Schweiz? Besuchen Sie lehmanns.de
The regularization cookbook - Vincent Vandenbussche

The regularization cookbook

explore practical recipes to improve the functionality of your ML models
Buch | Softcover
424 Seiten
2024 | 1. Auflage
Packt Publishing Limited (Verlag)
978-1-83763-408-8 (ISBN)
CHF 78,50 inkl. MwSt
Methodologies and recipes to regularize any machine learning and deep learning model using cutting-edge technologies such as stable diffusion, Dall-E and GPT-3
Purchase of the print or Kindle book includes a free PDF eBook

Key Features

Learn to diagnose the need for regularization in any machine learning model
Regularize different ML models using a variety of techniques and methods
Enhance the functionality of your models using state of the art computer vision and NLP techniques

Book DescriptionRegularization is an infallible way to produce accurate results with unseen data, however, applying regularization is challenging as it is available in multiple forms and applying the appropriate technique to every model is a must. The Regularization Cookbook provides you with the appropriate tools and methods to handle any case, with ready-to-use working codes as well as theoretical explanations.

After an introduction to regularization and methods to diagnose when to use it, you’ll start implementing regularization techniques on linear models, such as linear and logistic regression, and tree-based models, such as random forest and gradient boosting. You’ll then be introduced to specific regularization methods based on data, high cardinality features, and imbalanced datasets. In the last five chapters, you’ll discover regularization for deep learning models. After reviewing general methods that apply to any type of neural network, you’ll dive into more NLP-specific methods for RNNs and transformers, as well as using BERT or GPT-3. By the end, you’ll explore regularization for computer vision, covering CNN specifics, along with the use of generative models such as stable diffusion and Dall-E.

By the end of this book, you’ll be armed with different regularization techniques to apply to your ML and DL models.What you will learn

Diagnose overfitting and the need for regularization
Regularize common linear models such as logistic regression
Understand regularizing tree-based models such as XGBoos
Uncover the secrets of structured data to regularize ML models
Explore general techniques to regularize deep learning models
Discover specific regularization techniques for NLP problems using transformers
Understand the regularization in computer vision models and CNN architectures
Apply cutting-edge computer vision regularization with generative models

Who this book is forThis book is for data scientists, machine learning engineers, and machine learning enthusiasts, looking to get hands-on knowledge to improve the performances of their models. Basic knowledge of Python is a prerequisite.

After a Ph.D. in Physics, Vincent Vandenbussche has worked for a decade in the industry, deploying ML solutions at scale. He has worked in numerous companies, such as Renault, L’Oréal, General Electric, Jellysmack, Chanel, and CERN. He also has a passion for teaching: he co-founded a data science bootcamp, was an ML lecturer at Mines Paris engineering school and EDHEC business school and trained numerous professionals in companies like ArcelorMittal and Orange.

Table of Contents

Product Information Document
An Overview of Regularization
Machine Learning Refresher
Regularization with Linear Models
Regularization with Tree-Based Models
Regularization with Data
Deep Learning Reminders
Deep Learning Regularization
Regularization with Recurrent Neural Networks
Advanced Regularization in Natural Language Processing
Regularization in Computer Vision
Regularization in Computer Vision – Synthetic Image Generation

Erscheinungsdatum
Vorwort Akin Osman Kazakci
Zusatzinfo Illustrationen
Verlagsort Birmingham
Sprache englisch
Maße 191 x 235 mm
Einbandart kartoniert
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Angewandte Mathematik
ISBN-10 1-83763-408-4 / 1837634084
ISBN-13 978-1-83763-408-8 / 9781837634088
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95