Modern Biostatistical Methods for Evidence-Based Global Health Research (eBook)
XXIII, 480 Seiten
Springer International Publishing (Verlag)
978-3-031-11012-2 (ISBN)
This book provides an overview of the emerging topics in biostatistical theories and methods through their applications to evidence-based global health research and decision-making. It brings together some of the top scholars engaged in biostatistical method development on global health to highlight and describe recent advances in evidence-based global health applications. The volume is composed of five main parts: data harmonization and analysis; systematic review and statistical meta-analysis; spatial-temporal modeling and disease mapping; Bayesian statistical modeling; and statistical methods for longitudinal data or survival data.
It is designed to be illuminating and valuable to both expert biostatisticians and to health researchers engaged in methodological applications in evidence-based global health research. It is particularly relevant to countries where global health research is being rigorously conducted.
Ding-Geng (Din) Chen is an elected fellow of the American Statistical Association and an elected member of the International Statistical Institute. He is currently the executive director and professor in biostatistics at the College of Health Solutions, Arizona State University, USA. Professor Chen is also the DST-NRF-SAMRC research chair in Biostatistics and an Extraordinary Professor at the Department of Statistics, University of Pretoria, South Africa. He was the Wallace H. Kuralt Distinguished Professor at the University of North Carolina at Chapel Hill, a Professor in Biostatistics at the University of Rochester and the Karl E. Peace endowed eminent scholar chair in biostatistics at Georgia Southern University. He is also a senior consultant for biopharmaceuticals and government agencies with extensive expertise in clinical trial biostatistics and public health statistics. Professor Chen has written more than 200 refereed publications and co-authored/co-edited 33 books on clinical trial methodology, meta-analysis, causal-inference, Monte-Carlo simulation-based statistical modeling, big data analytics, and statistical modeling for the public health applications. His research has been funded as PI/Co-PI from NIH R01s and other state and federal government agencies with multi-million dollars.
Samuel Manda is a Professor and Head of the Department of Statistics, University of Pretoria, Pretoria, South Africa. He also holds Extraordinary Professorships at the Universities of Stellenbosch and North-West His main research interests concentrate on modern statistical methods for the analysis of survival, multivariate spatial data; and evidence and data combination. He has recently started working on multivariate small area estimation and causal effect estimation. He has also been involved with the analysis of COVID 19 transmission parameters and prediction in sub-Saharan Africa. . He has published more than 150 peer-reviewed publications and book chapters in biostatistics methodology and applied sciences. He is a National Research Foundation (South Africa NRF) rated Scientist.
Tobias Chirwa is currently the Head of the University of the Witwatersrand (Wits) School of Public Health (SPH). He is also the current Programme Director for the Sub-Saharan Africa Consortium for Advanced Biostatistics training (SSACAB) and co-leads the National Institutes of Health (NIH) Fogarty and WHO/TDR funded Implementation Science/Research program. He has developed and led capacity building initiatives including PhD programs, MSc programs in biostatistics, informatics and implementation science at University of Malawi (UNIMA) and Wits. Tobias has co-authored more than 95 internationally peer-reviewed articles. His methodological applications of interests are in longitudinal and survival data analysis.
Erscheint lt. Verlag | 25.11.2022 |
---|---|
Reihe/Serie | Emerging Topics in Statistics and Biostatistics | Emerging Topics in Statistics and Biostatistics |
Zusatzinfo | XXIII, 480 p. 60 illus., 35 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Statistik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Schlagworte | benefit-risk • biostatistical methods • evidence-based • Global Health • Meta-analysis • spatio-temporal model |
ISBN-10 | 3-031-11012-9 / 3031110129 |
ISBN-13 | 978-3-031-11012-2 / 9783031110122 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich