Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Applying Math with Python - Sam Morley

Applying Math with Python

Over 70 practical recipes for solving real-world computational math problems

(Autor)

Buch | Softcover
376 Seiten
2022 | 2nd Revised edition
Packt Publishing Limited (Verlag)
978-1-80461-837-0 (ISBN)
CHF 66,30 inkl. MwSt
Python offers powerful packages to help anyone tackle complex mathematical problems in a simple and efficient way. This practical guide explains how to model real-world problems as mathematical objects in Python, perform computations, and interpret results. Most of all, it shows what is possible when Python and math are combined.
Discover easy-to-follow solutions and techniques to help you to implement applied mathematical concepts such as probability, calculus, and equations using Python's numeric and scientific libraries

Key Features

Compute complex mathematical problems using programming logic with the help of step-by-step recipes
Learn how to use Python libraries for computation, mathematical modeling, and statistics
Discover simple yet effective techniques for solving mathematical equations and apply them in real-world statistics

Book DescriptionThe updated edition of Applying Math with Python will help you solve complex problems in a wide variety of mathematical fields in simple and efficient ways. Old recipes have been revised for new libraries and several recipes have been added to demonstrate new tools such as JAX.

You'll start by refreshing your knowledge of several core mathematical fields and learn about packages covered in Python's scientific stack, including NumPy, SciPy, and Matplotlib. As you progress, you'll gradually get to grips with more advanced topics of calculus, probability, and networks (graph theory). Once you've developed a solid base in these topics, you'll have the confidence to set out on math adventures with Python as you explore Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code.

By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.

What you will learn

Become familiar with basic Python packages, tools, and libraries for solving mathematical problems
Explore real-world applications of mathematics to reduce a problem in optimization
Understand the core concepts of applied mathematics and their application in computer science
Find out how to choose the most suitable package, tool, or technique to solve a problem
Implement basic mathematical plotting, change plot styles, and add labels to plots using Matplotlib
Get to grips with probability theory with the Bayesian inference and Markov Chain Monte Carlo (MCMC) methods

Who this book is forWhether you are a professional programmer or a student looking to solve mathematical problems computationally using Python, this is the book for you. Advanced mathematics proficiency is not a prerequisite, but basic knowledge of mathematics will help you to get the most out of this Python math book. Familiarity with the concepts of data structures in Python is assumed.

Sam Morley is an experienced lecturer in mathematics and a researcher in pure mathematics. He is currently a research software engineer at the University of Oxford working on the DataSig project. He was previously a lecturer in mathematics at the University of East Anglia and Nottingham Trent University. His research interests lie in functional analysis, especially Banach algebras. Sam has a firm commitment to providing high-quality, inclusive, and enjoyable teaching, with the aim of inspiring his students and spreading his enthusiasm for mathematics.

Table of Contents

An Introduction to Basic Packages, Functions, and Concepts
Mathematical Plotting Using Matplotlib
Calculus and differential equations
Working with randomness
Trees and networks
Working with data and statistics
Regression and forecasting
Geometric problems
Finding optimal solutions
Improving your productivity

Erscheinungsdatum
Verlagsort Birmingham
Sprache englisch
Maße 75 x 93 mm
Themenwelt Mathematik / Informatik Informatik Theorie / Studium
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
ISBN-10 1-80461-837-3 / 1804618373
ISBN-13 978-1-80461-837-0 / 9781804618370
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
was jeder über Informatik wissen sollte

von Timm Eichstädt; Stefan Spieker

Buch | Softcover (2024)
Springer Vieweg (Verlag)
CHF 53,15
Eine Einführung in die Systemtheorie

von Margot Berghaus

Buch | Softcover (2022)
UTB (Verlag)
CHF 34,95
Grundlagen – Anwendungen – Perspektiven

von Matthias Homeister

Buch | Softcover (2022)
Springer Vieweg (Verlag)
CHF 48,95