Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Path Integrals in Quantum Mechanics - Jean Zinn-Justin

Path Integrals in Quantum Mechanics

Buch | Hardcover
334 Seiten
2004
Oxford University Press (Verlag)
978-0-19-856674-8 (ISBN)
CHF 146,10 inkl. MwSt
Path integrals have allowed us to establish a direct mathematical relation between the theory of ordinary phase transitions and quantum field theory. This book introduces students to this topic within the context of ordinary quantum mechanics and non-relativistic many-body theory.
The main goal of this book is to familiarize the reader with a tool, the path integral, that not only offers an alternative point of view on quantum mechanics, but more importantly, under a generalized form, has also become the key to a deeper understanding of quantum field theory and its applications, extending from particle physics to phase transitions or properties of quantum gases.

Path integrals are mathematical objects that can be considered as generalizations to an infinite number of variables, represented by paths, of usual integrals. They share the algebraic properties of usual integrals, but have new properties from the viewpoint of analysis. They are powerful tools for the study of quantum mechanics, since they emphasize very explicitly the correspondence between classical and quantum mechanics. Physical quantities are expressed as averages over all possible paths but, in the semi-classical limit, the leading contributions come from paths close to classical paths. Thus, path integrals lead to an intuitive understanding of physical quantities in the semi-classical limit, as well as simple calculations of such quantities. This observation can be illustrated with scattering processes, spectral properties or barrier penetration effects. Even though the formulation of quantum mechanics based on path integrals seems mathematically more complicated than the usual formulation based on partial differential equations, the path integral formulation is well adapted to systems with many degrees of freedom, where a formalism of Schrödinger type is much less useful. It allows simple construction of a many-body theory both for bosons and fermions.

Jean Zinn-Justin is Head of DAPNIA/DSM/CEA-Saclay in France.

QUANTUM MECHANICS: MINIMAL BACKGROUND

Erscheint lt. Verlag 18.11.2004
Reihe/Serie Oxford Graduate Texts
Zusatzinfo 13 b/w line drawings
Verlagsort Oxford
Sprache englisch
Maße 172 x 246 mm
Gewicht 737 g
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Hochenergiephysik / Teilchenphysik
Naturwissenschaften Physik / Astronomie Quantenphysik
Naturwissenschaften Physik / Astronomie Theoretische Physik
ISBN-10 0-19-856674-3 / 0198566743
ISBN-13 978-0-19-856674-8 / 9780198566748
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Siegfried Hunklinger; Christian Enss

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 125,90

von Rudolf Gross; Achim Marx

Buch | Hardcover (2022)
De Gruyter Oldenbourg (Verlag)
CHF 109,95
Aufgaben und Lösungen

von Rudolf Gross; Achim Marx; Dietrich Einzel; Stephan Geprägs

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
CHF 62,90