Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Applied Linear Regression for Business Analytics with R - Daniel P. McGibney

Applied Linear Regression for Business Analytics with R

A Practical Guide to Data Science with Case Studies
Buch | Hardcover
XVII, 276 Seiten
2023 | 2023
Springer International Publishing (Verlag)
978-3-031-21479-0 (ISBN)
CHF 164,75 inkl. MwSt
  • Versand in 15-20 Tagen
  • Versandkostenfrei
  • Auch auf Rechnung
  • Artikel merken

Applied Linear Regression for Business Analytics with R introduces regression analysis to business students using the R programming language with a focus on illustrating and solving real-time, topical problems. Specifically, this book presents modern and relevant case studies from the business world, along with clear and concise explanations of the theory, intuition, hands-on examples, and the coding required to employ regression modeling. Each chapter includes the mathematical formulation and details of regression analysis and provides in-depth practical analysis using the R programming language.

Dr. Daniel McGibney is an Assistant Professor of Professional Practice at the University of Miami Herbert Business School, USA. He currently teaches analytics to both graduate and undergraduate students. Over the years, he has taught many analytics and data science classes, ranging from Basic Statistics to Big Data Analytics and Deep Learning. He has taught Applied Linear Regression Analysis to students pursuing their MSBA, MBA, MST, and MAcc. He also actively oversees and mentors graduate capstone projects in Analytics for MSBA students, collaborating with Deloitte, Visa, Carnival, Citi, Experian, and many other companies. Dr. McGibney formerly served as the program director for the Herbert Business School’s MSBA degree program. He advised students, oversaw admissions, expanded industry partnerships, and advanced the program curriculum during his tenure as program director.

1. Introduction.- 2. Basic Statistics and Functions using R.- 3. Regression Fundamentals.- 4. Simple Linear Regression.- 5. Multiple Regression.- 6. Estimation Intervals and Analysis of Variance.- 7. Predictor Variable Transformations.- 8. Model Diagnostics.- 9. Variable Selection.

Erscheinungsdatum
Reihe/Serie International Series in Operations Research & Management Science
Zusatzinfo XVII, 276 p. 86 illus., 53 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 566 g
Themenwelt Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Wirtschaft Allgemeines / Lexika
Wirtschaft Betriebswirtschaft / Management
Schlagworte Applied regression • Big Data • Business Analytics • Business mathematics • Data Science • linear models • machine learning • Regression Analysis • R Programming
ISBN-10 3-031-21479-X / 303121479X
ISBN-13 978-3-031-21479-0 / 9783031214790
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine anwendungsorientierte Einführung

von Klaus Backhaus; Bernd Erichson; Sonja Gensler

Buch | Softcover (2023)
Springer Gabler (Verlag)
CHF 69,95