Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Reconstruction and Intelligent Control for Power Plant - Chen Peng, Chuanliang Cheng, Ling Wang

Reconstruction and Intelligent Control for Power Plant (eBook)

eBook Download: PDF
2022 | 1st ed. 2023
XV, 208 Seiten
Springer Nature Singapore (Verlag)
978-981-19-5574-7 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
(CHF 93,95)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The authors' innovative research ideas in power plant control are presented in this book. This book focuses on 1) cognition and reconstruction of the temperature field; 2) intelligent setting and learning of power plants; 3) energy efficiency optimization and intelligent control for power plants, and so on, using historical power plant operation data and creative methods such as reconstruction of the combustion field, deep reinforcement learning, and networked collaborative control. It could help researchers, industrial engineers, and graduate students in the areas of signal detection, image processing, and control engineering.



Chen Peng received the Ph.D. degree in control theory and control engineering from the Chinese University of Mining Technology, Xuzhou, China, in 2002.

From November 2004 to January 2005, he was Research Associate with the University of Hong Kong, Hong Kong. From July 2006 to August 2007, he was Visiting Scholar with the Queensland University of Technology, Brisbane, QLD, Australia. From July 2011 to August 2012, he was Postdoctoral Research Fellow with Central Queensland University, Rockhampton, QLD, Australia. In 2012, he was appointed as Eastern Scholar with the Municipal Commission of Education, Shanghai, China, and joined Shanghai University, Shanghai, where he is currently Director with the Center of Networked Control Systems and Distinguished Professor. In 2018, he was appointed as Outstanding Academic Leader with the Municipal Commission of Science and Technology, Shanghai. His current research interests include networked control systems, intelligent control, optimizated control, and CPS.

Professor Peng is Associate Editor of a number of international journals, including the IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, Information Sciences, and Transactions of the Institute of Measurement and Control and so on. He was named Highly Cited Researcher in 2020 and 2021 by Clarivate Analytics.

Chuanliang Cheng received the B.Sc. degree in automation from Shandong Technology and Business University, Yantai, China, in 2012, and the M.Sc. degree in control science and engineering from Qingdao University, Qingdao, China in 2017. He is currently pursuing the Ph.D. degree with the School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China. His current research interest includes modeling, optimization, and nonlinear model predictive control of power plants.

Ling Wang received the Ph.D. degree from the East China University of Science and Technology, Shanghai, China, in 2007. From March 2012 to March 2013, he was Visiting Scholar with the University of Florida, Gainesville, USA. He is currently Professor with the School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China. He has authored or co-authored more than 80 publications. His current research interests include evolutionary computation, data-driven control, intelligent control, and machine learning.



The authors' innovative research ideas in power plant control are presented in this book. This book focuses on 1) cognition and reconstruction of the temperature field; 2) intelligent setting and learning of power plants; 3) energy efficiency optimization and intelligent control for power plants, and so on, using historical power plant operation data and creative methods such as reconstruction of the combustion field, deep reinforcement learning, and networked collaborative control. It could help researchers, industrial engineers, and graduate students in the areas of signal detection, image processing, and control engineering.
Erscheint lt. Verlag 21.9.2022
Zusatzinfo XV, 208 p. 100 illus., 90 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Schlagworte Flame Image Detection • Intelligent Control • power plant • Process Modeling • Temperature Field Reconstruction
ISBN-10 981-19-5574-3 / 9811955743
ISBN-13 978-981-19-5574-7 / 9789811955747
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95