Nicht aus der Schweiz? Besuchen Sie lehmanns.de

Econometrics with Machine Learning (eBook)

Felix Chan, László Mátyás (Herausgeber)

eBook Download: PDF
2022 | 1st ed. 2022
XXII, 371 Seiten
Springer International Publishing (Verlag)
978-3-031-15149-1 (ISBN)

Lese- und Medienproben

Econometrics with Machine Learning -
Systemvoraussetzungen
149,79 inkl. MwSt
(CHF 146,30)
Der eBook-Verkauf erfolgt durch die Lehmanns Media GmbH (Berlin) zum Preis in Euro inkl. MwSt.
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book helps and promotes the use of machine learning tools and techniques in econometrics and explains how machine learning can enhance and expand the econometrics toolbox in theory and in practice. 

Throughout the volume, the authors raise and answer six questions: 1) What are the similarities between existing econometric and machine learning techniques? 2) To what extent can machine learning techniques assist econometric investigation? Specifically, how robust or stable is the prediction from machine learning algorithms given the ever-changing nature of human behavior? 3) Can machine learning techniques assist in testing statistical hypotheses and identifying causal relationships in 'big data? 4) How can existing econometric techniques be extended by incorporating machine learning concepts? 5) How can new econometric tools and approaches be elaborated on based on machine learning techniques? 6) Is it possible to develop machine learning techniques further and make them even more readily applicable in econometrics?

As the data structures in economic and financial data become more complex and models become more sophisticated, the book takes a multidisciplinary approach in developing both disciplines of machine learning and econometrics in conjunction, rather than in isolation. This volume is a must-read for scholars, researchers, students, policy-makers, and practitioners, who are using econometrics in theory or in practice. 


László Mátyás is a University Professor at the Department of Economics and Business at the Central European University (CEU - Budapest, Hungary and Vienna, Austria). He (co)authored and (co)edited several high impact publications in econometrics, mostly in the field of panel data. Earlier, among others, he worked as Senior Lecturer at Monash University (Melbourne, Australia), was the founding Director of the Institute for Economic Analysis (Budapest, Hungary), and also served as Provost of CEU. Matyas serves as a co-editor of the Springer book series 'Advanced Studies in Theoretical and Applied Econometrics'.

Felix Chan is an Associate Professor at Curtin University and an elected Fellow of the Modelling and Simulation Society of Australia and New Zealand (MSSANZ). He serves as the Deputy Head, School of Accounting, Economics and Finance and was the Director of Centre for Research in Applied Economics (CRAE) between 2017 and 2022. Associate Professor Chan had also served as an external consultant to the Commonwealth Grant Commission (CGC), Department of Treasury Western Australia and Chamber of Commerce and Industry (WA) on issues surrounding forecasting, data analytics and mathematical modelling.
Erscheint lt. Verlag 7.9.2022
Reihe/Serie Advanced Studies in Theoretical and Applied Econometrics
Advanced Studies in Theoretical and Applied Econometrics
Zusatzinfo XXII, 371 p. 49 illus., 36 illus. in color.
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Wirtschaft Allgemeines / Lexika
Wirtschaft Volkswirtschaftslehre
Schlagworte Big Data • discrete choice models • Econometric forecasting and prediction • Econometric techniques • Empirical Applications • Inequality • linear models • Machine Learning and causality • Machine learning in finance • Modelling macroeconomic relations • network data • Non-Linear Models • Policy Evaluation • Poverty • Testing Statistical Hypotheses
ISBN-10 3-031-15149-6 / 3031151496
ISBN-13 978-3-031-15149-1 / 9783031151491
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
CHF 37,95