Coefficient Systems on the Bruhat-Tits Building and Pro-$p$ Iwahori-Hecke Modules
Seiten
2022
American Mathematical Society (Verlag)
978-1-4704-5376-3 (ISBN)
American Mathematical Society (Verlag)
978-1-4704-5376-3 (ISBN)
In general, this volume gives a description of the derived category of H-modules in terms of smooth G-representations and yields a functor to generalized (?, ?)-modules extending the constructions of Colmez, Schneider and Vigneras.
Let G be the group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristic p.LetI be a pro-p Iwahori subgroup of G and let R be a commutative quasi-Frobenius ring. If H = R[I/G/I] denotes the pro-p Iwahori- Hecke algebra of G over R we clarify the relation between the category of H-modules and the category of G-equivariant coefficient systems on the semisimple Bruhat-Tits building of G.IfR is a field of characteristic zero this yields alternative proofs of the exactness of the Schneider-Stuhler resolution and of the Zelevinski conjecture for smooth G-representations generated by their I-invariants. In general, it gives a description of the derived category of H-modules in terms of smooth G-representations and yields a functor to generalized (?, ?)-modules extending the constructions of Colmez, Schneider and Vign´eras.
Let G be the group of rational points of a split connected reductive group over a nonarchimedean local field of residue characteristic p.LetI be a pro-p Iwahori subgroup of G and let R be a commutative quasi-Frobenius ring. If H = R[I/G/I] denotes the pro-p Iwahori- Hecke algebra of G over R we clarify the relation between the category of H-modules and the category of G-equivariant coefficient systems on the semisimple Bruhat-Tits building of G.IfR is a field of characteristic zero this yields alternative proofs of the exactness of the Schneider-Stuhler resolution and of the Zelevinski conjecture for smooth G-representations generated by their I-invariants. In general, it gives a description of the derived category of H-modules in terms of smooth G-representations and yields a functor to generalized (?, ?)-modules extending the constructions of Colmez, Schneider and Vign´eras.
Jan Kohlhaase, Universitat Duisburg-Essen, Germany.
Erscheinungsdatum | 03.10.2022 |
---|---|
Reihe/Serie | Memoirs of the American Mathematical Society |
Verlagsort | Providence |
Sprache | englisch |
Maße | 178 x 254 mm |
Gewicht | 363 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 1-4704-5376-2 / 1470453762 |
ISBN-13 | 978-1-4704-5376-3 / 9781470453763 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Buch | Softcover (2022)
Springer Spektrum (Verlag)
CHF 55,95