Nicht aus der Schweiz? Besuchen Sie lehmanns.de
Introduction to Environmental Data Science - Jerry Davis

Introduction to Environmental Data Science

(Autor)

Buch | Hardcover
382 Seiten
2023
Chapman & Hall/CRC (Verlag)
978-1-032-32218-6 (ISBN)
CHF 134,40 inkl. MwSt
Introduction to Environmental Data Science focuses on data science methods in the R language applied to environmental research, with sections on exploratory data analysis in R including data abstraction, transformation, and visualization; spatial data analysis in vector and raster models and more.
Introduction to Environmental Data Science focuses on data science methods in the R language applied to environmental research, with sections on exploratory data analysis in R including data abstraction, transformation, and visualization; spatial data analysis in vector and raster models; statistics and modelling ranging from exploratory to modelling, considering confirmatory statistics and extending to machine learning models; time series analysis, focusing especially on carbon and micrometeorological flux; and communication. Introduction to Environmental Data Science is an ideal textbook to teach undergraduate to graduate level students in environmental science, environmental studies, geography, earth science, and biology, but can also serve as a reference for environmental professionals working in consulting, NGOs, and government agencies at the local, state, federal, and international levels.

Features

• Gives thorough consideration of the needs for environmental research in both spatial and temporal domains.

• Features examples of applications involving field-collected data ranging from individual observations to data logging.

• Includes examples also of applications involving government and NGO sources, ranging from satellite imagery to environmental data collected by regulators such as EPA.

• Contains class-tested exercises in all chapters other than case studies. Solutions manual available for instructors.

• All examples and exercises make use of a GitHub package for functions and especially data.

Jerry Douglas Davis is a Professor of Geography & Environment (https://geog.sfsu.edu/) and the Director of the Institute for Geographic Information Science (https://gis.sfsu.edu/) at San Francisco State University, and borrows heavily from his and his students' field-based environmental research for examples in the book.

1. Background, Goals & Data Part 1: Exploratory Data Analysis 2. Introduction to R 3. Data Abstraction 4. Visualization 5. Data Transformation Part 2: Spatial 6. Spatial Data and Maps 7. Spatial Analysis 8. Raster Spatial Analysis 9. Spatial Interpolation Part 3: Statistics & Modeling 10. Statistical Summaries and Tests 11. Modeling 12. Imagery and Classification Models Part 4: Time Series 13. Time Series Visualization & Analysis Part 5: Communication and References 14. Communication with Shiny

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Data Science Series
Zusatzinfo 5 Tables, black and white; 103 Line drawings, color; 67 Line drawings, black and white; 82 Halftones, color; 9 Halftones, black and white; 185 Illustrations, color; 76 Illustrations, black and white
Sprache englisch
Maße 178 x 254 mm
Gewicht 980 g
Themenwelt Mathematik / Informatik Mathematik
ISBN-10 1-032-32218-7 / 1032322187
ISBN-13 978-1-032-32218-6 / 9781032322186
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Von Logik und Mengenlehre bis Zahlen, Algebra, Graphen und …

von Bernd Baumgarten

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
CHF 104,90
fundiert, vielseitig, praxisnah

von Friedhelm Padberg; Christiane Benz

Buch | Softcover (2021)
Springer Berlin (Verlag)
CHF 46,15
Analysis und Lineare Algebra mit Querverbindungen

von Tilo Arens; Rolf Busam; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
CHF 89,95